predict.cv.HDtweedie | R Documentation |
This function makes predictions from a cross-validated HDtweedie
model,
using the stored "cv.HDtweedie"
object, and the optimal value
chosen for lambda
.
## S3 method for class 'cv.HDtweedie' predict(object, newx, s=c("lambda.1se","lambda.min"),...)
object |
fitted |
newx |
matrix of new values for |
s |
value(s) of the penalty parameter |
... |
not used. Other arguments to predict. |
This function makes it easier to use the results of cross-validation to make a prediction.
The returned object depends on the ... argument which is passed on
to the predict
method for HDtweedie
objects.
Wei Qian, Yi Yang and Hui Zou
Maintainer: Wei Qian <weiqian@stat.umn.edu>
Qian, W., Yang, Y., Yang, Y. and Zou, H. (2016), “Tweedie's Compound
Poisson Model With Grouped Elastic Net,” Journal of Computational and Graphical Statistics, 25, 606-625.
cv.HDtweedie
, and coef.cv.HDtweedie
methods.
# load HDtweedie library library(HDtweedie) # load data set data(auto) # 5-fold cross validation using the lasso cv0 <- cv.HDtweedie(x=auto$x,y=auto$y,p=1.5,nfolds=5) # predicted mean response at lambda = lambda.1se, newx = x[1,] pre = predict(cv0, newx = auto$x[1,], type = "response") # define group index group1 <- c(rep(1,5),rep(2,7),rep(3,4),rep(4:14,each=3),15:21) # 5-fold cross validation using the grouped lasso cv1 <- cv.HDtweedie(x=auto$x,y=auto$y,group=group1,p=1.5,nfolds=5) # predicted the log mean response at lambda = lambda.min, x[1:5,] pre = predict(cv1, newx = auto$x[1:5,], s = cv1$lambda.min, type = "link")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.