View source: R/plot.cv.HDtweedie.R
plot.cv.HDtweedie | R Documentation |
Plots the cross-validation curve, and upper and lower standard deviation
curves, as a function of the lambda
values used. This function is modified based on the plot.cv
function from the glmnet
package.
## S3 method for class 'cv.HDtweedie' plot(x, sign.lambda, ...)
x |
fitted |
sign.lambda |
either plot against |
... |
other graphical parameters to plot |
A plot is produced.
Wei Qian, Yi Yang and Hui Zou
Maintainer: Wei Qian <weiqian@stat.umn.edu>
Qian, W., Yang, Y., Yang, Y. and Zou, H. (2016), “Tweedie's Compound
Poisson Model With Grouped Elastic Net,” Journal of Computational and Graphical Statistics, 25, 606-625.
Friedman, J., Hastie, T., and Tibshirani, R. (2010), “Regularization paths for generalized
linear models via coordinate descent,” Journal of Statistical Software, 33, 1.
cv.HDtweedie
.
# load HDtweedie library library(HDtweedie) # load data set data(auto) # 5-fold cross validation using the lasso cv0 <- cv.HDtweedie(x=auto$x,y=auto$y,p=1.5,nfolds=5,lambda.factor=.0005) # make a CV plot plot(cv0) # define group index group1 <- c(rep(1,5),rep(2,7),rep(3,4),rep(4:14,each=3),15:21) # 5-fold cross validation using the grouped lasso cv1 <- cv.HDtweedie(x=auto$x,y=auto$y,group=group1,p=1.5,nfolds=5,lambda.factor=.0005) # make a CV plot plot(cv1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.