Nothing
######################################################################
## This function is adapted/modified based on the plot.cv function from
## the glmnet package:
## Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010).
## Regularization Paths for Generalized Linear Models via Coordinate
# Descent.
## Journal of Statistical Software, 33(1), 1-22.
## URL http://www.jstatsoft.org/v33/i01/.
plot.cv.HDtweedie <- function(x, sign.lambda = 1, ...) {
cvobj <- x
xlab <- "log(Lambda)"
if (sign.lambda < 0)
xlab <- paste("-", xlab, sep = "")
plot.args <- list(x = sign.lambda * log(cvobj$lambda), y = cvobj$cvm, ylim = range(cvobj$cvupper,
cvobj$cvlo), xlab = xlab, ylab = cvobj$name, type = "n")
new.args <- list(...)
if (length(new.args))
plot.args[names(new.args)] <- new.args
do.call("plot", plot.args)
error.bars(sign.lambda * log(cvobj$lambda), cvobj$cvupper, cvobj$cvlo, width = 0.01,
col = "darkgrey")
points(sign.lambda * log(cvobj$lambda), cvobj$cvm, pch = 20, col = "red")
axis(side = 3, at = sign.lambda * log(cvobj$lambda), tick = FALSE, line = 0)
abline(v = sign.lambda * log(cvobj$lambda.min), lty = 3)
abline(v = sign.lambda * log(cvobj$lambda.1se), lty = 3)
invisible()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.