Nothing
######################################################################
## These functions are minor modifications or directly copied from the
## glmnet package:
## Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010).
## Regularization Paths for Generalized Linear Models via Coordinate
# Descent.
## Journal of Statistical Software, 33(1), 1-22.
## URL http://www.jstatsoft.org/v33/i01/.
## The reason they are copied here is because they are internal functions
## and hence are not exported into the global environment.
## The original comments and header are preserved.
err <- function(n, maxit, pmax) {
if (n == 0)
msg <- ""
if (n > 0) {
#fatal error
if (n < 7777)
msg <- "Memory allocation error"
if (n >= 20000 & n < 30000)
msg <- paste("Predictor ", n-20000, " has zero variance")
if (n == 10000)
msg <- "All penalty factors are <= 0"
if (n == 15000)
msg <- "Some observation weights are negative"
if (n >= 30000)
msg <- "SVD fails"
n <- 1
msg <- paste("in tweediegrpnet fortran code -", msg)
}
if (n < 0) {
#non fatal error
if (n > -10000)
msg <- paste("Convergence for ", -n, "th lambda value not reached after maxit=",
maxit, " iterations; solutions for larger lambdas returned",
sep = "")
if (n < -10000)
msg <- paste("Number of nonzero coefficients along the path exceeds pmax=",
pmax, " at ", -n - 10000, "th lambda value; solutions for larger lambdas returned",
sep = "")
n <- -1
msg <- paste("from cmd fortran code -", msg)
}
list(n = n, msg = msg)
}
error.bars <- function(x, upper, lower, width = 0.02, ...) {
xlim <- range(x)
barw <- diff(xlim) * width
segments(x, upper, x, lower, ...)
segments(x - barw, upper, x + barw, upper, ...)
segments(x - barw, lower, x + barw, lower, ...)
range(upper, lower)
}
getoutput <- function(fit, maxit, pmax, nvars, vnames) {
nalam <- fit$nalam
nbeta <- fit$nbeta[seq(nalam)]
nbetamax <- max(nbeta)
lam <- fit$alam[seq(nalam)]
stepnames <- paste("s", seq(nalam) - 1, sep = "")
errmsg <- err(fit$jerr, maxit, pmax) ### error messages from fortran
switch(paste(errmsg$n), `1` = stop(errmsg$msg, call. = FALSE), `-1` = print(errmsg$msg,
call. = FALSE))
dd <- c(nvars, nalam)
if (nbetamax > 0) {
beta <- matrix(fit$beta[seq(nvars * nalam)], nvars, nalam, dimnames = list(vnames,
stepnames))
df <- apply(abs(beta) > 0, 2, sum)
} else {
beta <- matrix(0, nvars, nalam, dimnames = list(vnames, stepnames))
df <- rep(0, nalam)
}
b0 <- fit$b0
if (!is.null(b0)) {
b0 <- b0[seq(nalam)]
names(b0) <- stepnames
}
list(b0 = b0, beta = beta, df = df, dim = dd, lambda = lam)
}
lambda.interp <- function(lambda, s) {
### lambda is the index sequence that is produced by the model
### s is the new vector at which evaluations are required.
### the value is a vector of left and right indices, and a
# vector of fractions.
### the new values are interpolated bewteen the two using the
# fraction
### Note: lambda decreases. you take:
### sfrac*left+(1-sfrac*right)
if (length(lambda) == 1) {
nums <- length(s)
left <- rep(1, nums)
right <- left
sfrac <- rep(1, nums)
} else {
s[s > max(lambda)] <- max(lambda)
s[s < min(lambda)] <- min(lambda)
k <- length(lambda)
sfrac <- (lambda[1] - s)/(lambda[1] - lambda[k])
lambda <- (lambda[1] - lambda)/(lambda[1] - lambda[k])
coord <- approx(lambda, seq(lambda), sfrac)$y
left <- floor(coord)
right <- ceiling(coord)
sfrac <- (sfrac - lambda[right])/(lambda[left] - lambda[right])
sfrac[left == right] <- 1
}
list(left = left, right = right, frac = sfrac)
}
lamfix <- function(lam) {
llam <- log(lam)
lam[1] <- exp(2 * llam[2] - llam[3])
lam
}
getmin <- function(lambda, cvm, cvsd) {
cvmin <- min(cvm, na.rm=TRUE)
idmin <- cvm <= cvmin
lambda.min <- max(lambda[idmin], na.rm=TRUE)
idmin <- match(lambda.min, lambda)
semin <- (cvm + cvsd)[idmin]
idmin <- cvm <= semin
lambda.1se <- max(lambda[idmin], na.rm=TRUE)
list(lambda.min = lambda.min, lambda.1se = lambda.1se)
}
devi <- function(y, mu, rho) {
((y^(2-rho)-y*mu^(1-rho))/(1-rho) - (y^(2-rho)-mu^(2-rho))/(2-rho))*2
}
cvcompute=function(mat,weights,foldid,nlams){
###Computes the weighted mean and SD within folds, and hence the se of the mean
wisum=tapply(weights,foldid,sum)
nfolds=max(foldid)
outmat=matrix(NA,nfolds,ncol(mat))
good=matrix(0,nfolds,ncol(mat))
mat[is.infinite(mat)]=NA#just in case some infinities crept in
for(i in seq(nfolds)) {
mati=mat[foldid==i,]
wi=weights[foldid==i]
outmat[i,]=apply(mati,2,weighted.mean,w=wi,na.rm=TRUE)
good[i,seq(nlams[i])]=1
}
N=apply(good,2,sum)
list(cvraw=outmat,weights=wisum,N=N)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.