# R/fooDeriv.R In IAPWS95: Thermophysical Properties of Water and Steam

#### Documented in dDdTTDdDdTTpdpdDTDdpdDTpdpdTTDdpdTTpKapaTDThrcTD

```#' Pressure Derivative with Respect to Temperature, Function of Temperature and Density
#'
#' @description The function \code{dpdTTD(Temp,D,digits=9)} returns the pressure derivative with
#'     respect to Temperature, dpdT, for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The pressure derivative with respect to Temp: dp/dTemp [ MPa K-1 ] and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' dpdTemp <- dpdTTD(Temp,D)
#' dpdTemp
#'
#' @export
#'
dpdTTD <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('dpdTTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' Pressure Derivative with respect to Temperature, Function of Temperature and Pressure
#'
#' @description The function \code{dpdTTp(Temp,p,digits=9)} returns the pressure derivative with
#'     respect to Temperature, dpdTemp, for given Temp [K] and p [MPa].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The pressure derivative with respect to Temp: dp/dTemp [ MPa K-1 ] and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' dpdTemp <- dpdTTp(Temp,p)
#' dpdTemp
#'
#' @export
#'
dpdTTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('dpdTTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' Pressure Derivative with respect to Density, Function of Temperature and Density
#'
#' @description The function \code{dpdDTD(Temp,D,digits=9)} returns the pressure derivative with
#'     respect to Density, dpdD, for given T [K] and D [kg m-3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#' @return The pressure derivative with respect to D: dp/dD [ MPa kg-1 m3  ] and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' dpdD <- dpdDTD(Temp,D)
#' dpdD
#'
#' @export
#'
dpdDTD <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('dpdDTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' Pressure Derivative with respect to Density, Function of Temperature and Pressure
#'
#' @description The function \code{dpdDTp(Temp,p)} returns the pressure derivative with
#'     respect to Density, dpdD, for given Temp [K] and p [MPa].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The pressure derivative with respect to d: dp/dD [ MPa kg-1 m3 ] and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' dpdD <- dpdDTp(Temp,p)
#' dpdD
#'
#' @export
#'
dpdDTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('dpdDTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' Density Derivative with respect to Temperature, Function of Temperature and Density
#'
#' @description The function \code{dDdTTD(Temp,D,digits=9)} returns the pressure derivative with
#'     respect to Density, dpdD, for given Temp [K] and D [kg m-3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Density Derivative with respect to T: dD/dTemp [ kg m-3 K-1 ] and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' dDdTemp <- dDdTTD(Temp,D)
#' dDdTemp
#'
#' @export
#'
dDdTTD <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('dDdTTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' Density Derivative with respect to Temperature, Function of Temperature and Pressure
#'
#' @description The function \code{dDdTTp(Temp,p,digits=9)} returns the Density derivative with
#'     respect to Temperature, dDdTemp, for given Temp [K] and p [MPa].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Density derivative with respect to Temp: dD/dTemp [ kg m-3 K-1 ] and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' dDdTemp <- dDdTTp(Temp,p)
#' dDdTemp
#'
#' @export
#'
dDdTTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('dDdTTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' Isothermal Throttling Coefficient, Function of Temperature and Density
#'
#' @description The function \code{ThrcTD(Temp,D,digits=9)} returns the Isothermal Throttling Coefficient,
#'     Thrc, for given Temp [K] and D [kg m-3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Isothermal Throttling Coefficient: Thrc [ kJ kg-1 MPa-1 ] and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' Thrc <- ThrcTD(Temp,D)
#' Thrc
#'
#' @export
#'
ThrcTD <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('ThrcTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' Isothermal Compressibility, Function of Temperature and Density
#'
#' @description The function \code{KapaTD(Temp,D,disgits=9)} returns the Isothermal Compressibility, Kapa,
#'     for given Temp [K] and D [kg m-3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Isothermal Compressibility: Kapa [ MPa-1 ] and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' Kapa <- KapaTD(Temp,D)
#' Kapa
#'
#' @export
#'
KapaTD <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('kapaTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

```

## Try the IAPWS95 package in your browser

Any scripts or data that you put into this service are public.

IAPWS95 documentation built on June 24, 2022, 9:05 a.m.