# R/fooHZ.R In IAPWS95: Thermophysical Properties of Water and Steam

#### Documented in phi0phi0Dphi0DDphi0DTphi0Tphi0TTphirphirDphirDDphirDTphirTphirTT

```#' Ideal-Gas part of the Dimensionless Helmholtz Energy Equation, Function of Temperature and Density
#'
#' @description The function \code{phi0(Temp,D,digits=9)} returns the Ideal-gas part of the
#'      dimensionless Helmholtz Energy Equation, phi0, for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Ideal-gas part of the Helmholtz Energy Equation: phi0 and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' phi_0 <- phi0(Temp,D)
#' phi_0
#'
#' @export
#'
phi0 <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phi0TD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' First Derivative of the Ideal-Gas part of the Dimensionless Helmholtz Energy
#'      Equation with respect to Density, Function of Density
#'
#' @description The function \code{phi0D(D,digits=9)} returns the First Derivative of the
#'     Ideal-gas part of the dimensionless Helmholtz Energy Equation for a given D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The First D Derivative of Ideal-gas part of the Helmholtz Energy: phi0D and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' D <- 838.025
#' phi_0 <- phi0D(D)
#' phi_0
#'
#' @export
#'
phi0D <- function(D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phi0DD', as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' Second Derivative of the Ideal-Gas Part of the Dimensionless Helmholtz Energy Equation
#'     with respect to Density, Function of Density
#'
#' @description The function \code{phi0DD(D,digits=9)} returns the Second Derivative of the
#'     Ideal-gas part of the dimensionless Helmholtz Energy Equation for a given D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Second D Derivative of Ideal-gas part of the Helmholtz Energy: phi0DD and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' D <- 838.025
#' phi_0 <- phi0DD(D)
#' phi_0
#'
#' @export
#'
phi0DD <- function(D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phi0DDD', as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits=digits))
}

#' First Derivative of the Ideal-Gas Part of the Dimensionless Helmholtz Energy Equation
#'     with respect to Temperature, Function of Temperature and Density
#'
#' @description The function \code{phi0T(Temp,D,digits=9)} returns the First Derivative of the
#'     Ideal-gas Part of the dimensionless Helmholtz Energy Equation with respect to
#'     Temperature, for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The First Temp Derivative of Ideal-gas part of the Helmholtz Energy: phi0T and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' phi0_T <- phi0T(Temp,D)
#' phi0_T
#'
#' @export
#'
phi0T <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phi0TTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits = digits))
}

#' Second Derivative of the Ideal-Gas Part of the Dimensionless Helmholtz Energy Equation
#'     with respect to Temperature, Function of Temperature and Density
#'
#' @description The function \code{phi0TT(Temp,D,digits =9)} returns the Second Derivative of the
#'     Ideal-gas Part of the Dimensionless Helmholtz Energy Equation with respect to
#'     Temperature, for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Second Temp Derivative of Ideal-gas part of the Helmholtz Energy: phi0TT and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' phi0_TT <- phi0TT(Temp,D)
#' phi0_TT
#'
#' @export
#'
phi0TT <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phi0TTTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits = digits))
}

#' Second Derivative of the Ideal-Gas Part of the Dimensionless Helmholtz Energy Equation
#'     with respect to Density and Temperature
#'
#' @description The function \code{phi0DT(digits=9)} returns the Second Derivative of the
#'     Ideal-gas Part of the Dimensionless Helmholtz Energy Equation with respect to
#'     Density and Temperature.
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @return The Second DT Derivative of Ideal-gas Part of the Helmholtz Energy: phi0DT and an Error
#'      Message (if an error occur: \link{errorCodes})
#'
#' @param digits Digits of results (optional)
#'
#' @examples
#' phi0_DT <- phi0DT()
#' phi0_DT
#'
#' @export
#'
phi0DT <- function(digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phi0DT', as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits = digits))
}

#' Residual-Gas Part of the Dimensionless Helmholtz Energy Equation, Function
#'     of Temperature and Density
#'
#' @description The function \code{phir(Temp,D,digits=9)} returns the Residual-Gas Part of the Dimensionless
#'     Helmholtz Energy Equation for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Residual-Gas Part of the Dimensionless Helmholtz Energy Equation: phir
#'      and an Error Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' phir_TD <- phir(Temp,D)
#' phir_TD
#'
#' @export
#'
phir <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phiRTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits = digits))
}

#' First Derivative of the Residual-Gas part of the Dimensionless Helmholtz Energy Equation
#'     with respect to Density, Function of Temperature and Density
#'
#' @description The function \code{phirD(Temp,D,digits=9)} returns the First Derivative of the
#'     Residual-Gas Part of the Dimensionless Helmholtz Energy Equation for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The First Derivative of the Residual-Gas Part of the Dimensionless Helmholtz
#'     Energy Equation: phirD, and an Error Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' phir_D <- phirD(T,D)
#' phir_D
#'
#' @export
#'
phirD <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phiRDTD', as.double(T), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits))
}

#' Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz
#'     Energy Equation with respect to Density, Function of Temperature and Density
#'
#' @description The function \code{phirDD(Temp,D,digits=9)} returns the Second Derivative of the
#'     Residual-Gas Part of the Dimensionless Helmholtz Energy Equation for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz
#'     Energy Equation: phirDD, and an Error Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' phir_DD <- phirDD(Temp,D)
#' phir_DD
#'
#' @export
#'
phirDD <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phiRDDTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits = digits))
}

#' First Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation
#'     with respect to Temperature, Function of Temperature and Density
#'
#' @description The function \code{phirT(Temp,D,digits=9)} returns the First Derivative of the
#'     Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temp,
#'     for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The First Derivative of the Residual-Gas Part of the Dimensionless Helmholtz
#'     Energy Equation with respect to Temp: phirT, and an Error Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' phir_T <- phirT(Temp,D)
#' phir_T
#'
#' @export
#'
phirT <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phiRTTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits = digits))
}

#' Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation
#'     with respect to Temperature, Function of Temperature and Density
#'
#' @description The function \code{phirTT(Temp,D,digits=9)} returns the Second Derivative of the
#'     Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temp,
#'     for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz
#'     Energy Equation with respect to T: phirTT, and an Error Message
#'     (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' phir_TT <- phirTT(Temp,D)
#' phir_TT
#'
#' @export
#'
phirTT <- function(Temp,D,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('phiRTTTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits = digits))
}

#' Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation
#'     with respect to Density and Temperature, Function of Temperature and Density
#'
#' @description The function \code{phirDT(Temp,D,digits=9)} returns the Second Derivative of the
#'     Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to D and Temp,
#'     for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#'     in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#'     Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#'     Use (June 2014) developed by the International Association for the Properties of
#'     Water and Steam,  \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#'     from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param D Density [ kg m-3 ]
#' @param digits Digits of results (optional)
#'
#' @return The Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz
#'     Energy Equation with respect to D and Temp: phirTT, and an Error Message
#'     (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' D <- 838.025
#' phir_DT <- phirDT(Temp,D)
#' phir_DT
#'
#' @export
#'
phirDT <- function(Temp,D,digits) {
y <- 0.
icode <- 0
res <- .Fortran('phiRDTTD', as.double(Temp), as.double(D), as.double(y), as.integer(icode))
if (res[] != 0) {
error <-  as.character(errorCodes[which(errorCodes[,1]==res[]),2])
print(error)
}
return(round(res[],digits = digits))
}

```

## Try the IAPWS95 package in your browser

Any scripts or data that you put into this service are public.

IAPWS95 documentation built on June 24, 2022, 9:05 a.m.