Nothing
knitr::opts_chunk$set(
echo = TRUE,
fig.align = "center",
cache = FALSE,
collapse = TRUE,
dev = 'png',
fig.width = 6,
fig.height = 4,
dpi = 150
)
library(IBMPopSim)
library(ggfortify)
library(gridExtra)
# Generate population
N <- 900
x0 <- 1.06
agemin <- 0.
agemax <- 2.
pop_df_init <- data.frame(
"birth" = -runif(N, agemin, agemax),
"death" = as.double(NA),
"birth_size" = x0
)
pop_init <- population(pop_df_init)
get_characteristics(pop_init)
# parameters for birth event
params_birth <- list(
"p" = 0.03,
"sigma" = sqrt(0.01),
"alpha" = 1)
birth_event <- mk_event_individual( type = "birth",
intensity_code = 'result = alpha * (4 - I.birth_size);',
kernel_code = 'if (CUnif() < p)
newI.birth_size = min(max(0., CNorm(I.birth_size, sigma)), 4.);
else
newI.birth_size = I.birth_size;')
# parameters for death event
params_death <- list(
"g" = 1,
"beta" = 2./300.,
"c" = 1.2
)
death_event <- mk_event_interaction( # Event with intensity of type interaction
type = "death",
interaction_code = "double x_I = I.birth_size + g * age(I,t);
double x_J = J.birth_size + g * age(J,t);
result = beta * ( 1.- 1./(1. + c * exp(-4. * (x_I-x_J))));"
)
model <- mk_model(
characteristics = get_characteristics(pop_init),
events = list(birth_event, death_event),
parameters = c(params_birth, params_death)
)
summary(model)
birth_intensity_max <- 4*params_birth$alpha
interaction_fun_max <- params_death$beta
T = 500
# Multithreading is NOT possible due to interaction between individuals
sim_out <- popsim(model = model,
initial_population = pop_init,
events_bounds = c('birth'=birth_intensity_max, 'death'=interaction_fun_max),
parameters = c(params_birth, params_death),
age_max = 2,
time = T)
sim_out$logs["duration_ns"]
str(sim_out$population)
pop_out <- sim_out$population
pop_size <- nrow(population_alive(pop_out,t = 500))
pop_size
ggplot(pop_out) + geom_segment(
aes(x=birth, xend=death, y=birth_size, yend=birth_size),
na.rm=TRUE, colour="blue", alpha=0.1) +
xlab("Time") +
ylab("Birth size")
params_death$g <- 0.3
sim_out <- popsim(model = model,
initial_population = pop_init,
events_bounds = c('birth'=birth_intensity_max, 'death'=interaction_fun_max),
parameters = c(params_birth, params_death),
age_max = 2,
time = T)
pop_out <- sim_out$population
ggplot(pop_out) +
geom_segment(aes(x=birth, xend=death, y=birth_size, yend=birth_size),
na.rm=TRUE, colour="blue", alpha=0.1) +
xlab("Time") + ylab("Birth size")
pyr <- age_pyramid(pop_out, ages = seq(0,2,by=0.2), time = 500)
head(pyr)
pyr$group_name <- as.character(cut(pyr$birth_size+1e-6, breaks = seq(0,4,by=0.25)))
head(pyr)
library(colorspace)
lbls <- sort(unique(pyr$group_name))
# Attribution of a color to each subgroup
colors <- c(diverging_hcl(n=length(lbls), palette = "Red-Green"))
names(colors) <- lbls
plot(pyr, group_colors = colors, group_legend = 'Birth size')
pyrs <- age_pyramids(pop_out, ages = seq(0,2,by=0.2), time = 50:500)
pyrs$group_name <- as.character(cut(pyrs$birth_size+1e-6, breaks = seq(0,4,by=0.25)))
lbls <- sort(unique(pyrs$group_name))
colors <- c(diverging_hcl(n=length(lbls), palette = "Red-Green"))
names(colors) <- lbls
# Only working for html render of the vignette
# library(gganimate)
# anim <- plot(pyrs, group_colors = colors, group_legend = 'Birth size') +
# transition_time(time) +
# labs(title = "Time: {frame_time}")
# animate(anim, nframes = 450, fps = 10)
N <- 2000
pop_df_init_big <- data.frame(
"birth" = -runif(N, agemin, agemax), # Age of each individual chosen uniformly in [0,2]
"death" = as.double(NA),
"birth_size" = x0 # All individuals have initially the same birth size x0.
)
pop_init_big <- population(pop_df_init_big)
params_birth$alpha <- 4
params_birth$p <- 0.01 # Mutation probability
params_death$beta <- 1/100
params_death$g <- 1
birth_intensity_max <- 4*params_birth$alpha
interaction_fun_max <- params_death$beta
sim_out <- popsim(
model = model,
initial_population = pop_init_big,
events_bounds = c('birth'=birth_intensity_max, 'death'=interaction_fun_max),
parameters = c(params_birth, params_death),
age_max = 2,
time = T)
pop_size <- nrow(population_alive(sim_out$population, t = 500))
pop_size
ggplot(sim_out$population) +
geom_segment(aes(x=birth, xend=death, y=birth_size, yend=birth_size),
na.rm=TRUE, colour="blue", alpha=0.1) +
xlab("Time") +
ylab("Birth size")
# Comparison full vs random
death_event_full <- mk_event_interaction(type = "death",
interaction_type= "full",
interaction_code = "double x_I = I.birth_size + g * age(I,t);
double x_J = J.birth_size + g * age(J,t);
result = beta * ( 1.- 1./(1. + c * exp(-4. * (x_I-x_J))));"
)
model_full <- mk_model(characteristics = get_characteristics(pop_init),
events = list(birth_event, death_event_full),
parameters = c(params_birth, params_death))
sim_out_full <- popsim(model = model_full,
initial_population = pop_init_big,
events_bounds = c('birth' = birth_intensity_max, 'death' =interaction_fun_max),
parameters = c(params_birth, params_death),
age_max = 2,
time = T)
sim_out_full$logs["duration_ns"]/sim_out$logs["duration_ns"]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.