dproc2 | R Documentation |
dproc2
computes and returns all the pairwise procrustes distances between genes in a time course experiment, using their expression profile.
dproc2(x, timepoints = NULL)
x |
a matrix containing, in its rows, the gene expression values at the T considered time points. |
timepoints |
a T-vector with the T observed time points. If |
Each row i of matrix x is arranged in a two column matrix Xi. In Xi, the first column contains the time points and the second column the observed gene expression values (xi1...).
A dist
object with distance information.
Itziar Irigoien itziar.irigoien@ehu.eus; Konputazio Zientziak eta Adimen Artifiziala, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, Spain.
Conchita Arenas carenas@ub.edu; Departament d'Estadistica, Universitat de Barcelona, Barcelona, Spain.
Irigoien, I. , Vives, S. and Arenas, C. (2011). Microarray Time Course Experiments: Finding Profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(2), 464–475.
Gower, J. C. and Dijksterhuis, G. B. (2004) Procrustes Problems. Oxford University Press.
Sibson, R. (1978). Studies in the Robustness of Multidimensional Scaling: Procrustes statistic. Journal of the Royal Statistical Society, Series B, 40, 234–238.
dist
, dmahal
, dgower
, dcor
dbhatta
# Given 10 hypothetical time course profiles # over 6 time points at 1, 2, ..., 6 hours. x <- matrix(c(0.38, 0.39, 0.38, 0.37, 0.385, 0.375, 0.99, 1.19, 1.50, 1.83, 2.140, 2.770, 0.38, 0.50, 0.71, 0.72, 0.980, 1.010, 0.20, 0.40, 0.70, 1.06, 2.000, 2.500, 0.90, 0.95, 0.97, 1.50, 2.500, 2.990, 0.64, 2.61, 1.51, 1.34, 1.330 ,1.140, 0.71, 1.82, 2.28, 1.72, 1.490, 1.060, 0.71, 1.82, 2.28, 1.99, 1.975, 1.965, 0.49, 0.78, 1.00, 1.27, 0.590, 0.340, 0.71,1.00, 1.50, 1.75, 2.090, 1.380), nrow=10, byrow=TRUE) # Graphical representation matplot(t(x), type="b") # Distance matrix between them d <- dproc2(x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.