Nothing
gdist <-
function(lon.1, lat.1, lon.2, lat.2, units = 'nm', a = 6378137.0, b = 6356752.3142, verbose = FALSE)
{
#
# Calculate geodesic distance (in nm) between two points specified by latitude/longitude
# using Vincenty inverse formula for ellipsoids
# Reference: Direct and inverse solutions of geodesics on the ellipsoid with application
# of nested equations. Survey Review XXII, 176, April 1975.
#
# Inspired by: http://www.movable-type.co.uk/scripts/LatLongVincenty.html
#
# DATE WRITTEN: 10 January 2005 LAST REVISED: 04 January 2010
# AUTHOR: John R. Wallace: Imap.for.R@gmail.com
#
#
if(any(!is.finite(c(lon.1, lat.1, lon.2, lat.2))))
return(NA)
# a, b = major & minor semiaxes of the ellipsoid in meters
# flat = flattening (a-b)/a
# lat.1, lat.2 = geodetic latitude
# L = difference in longitude
rad <- pi/180
lon.1 <- lon.1 * rad
lat.1 <- lat.1 * rad
lon.2 <- lon.2 * rad
lat.2 <- lat.2 * rad
flat <- (a - b)/a
L <- lon.1 - lon.2
U1 <- atan((1 - flat) * tan(lat.1))
U2 <- atan((1 - flat) * tan(lat.2))
lamda <- L
lamda.old <- 2 * pi
if(verbose)
cat("\nStarting lamda =", lamda, "\n\n")
i <- 1
while(abs(lamda - lamda.old) > 1e-011) {
sin.sigma <- sqrt((cos(U2) * sin(lamda))^2 + (cos(U1) * sin(U2) - sin(U1) * cos(U2) * cos(lamda))^2)
cos.sigma <- sin(U1) * sin(U2) + cos(U1) * cos(U2) * cos(lamda)
sigma <- atan2(sin.sigma, cos.sigma)
sin.alpha <- (cos(U1) * cos(U2) * sin(lamda))/ifelse(sin(sigma) == 0, 1e-025, sin(sigma))
cos2.alpha <- 1 - sin.alpha^2
cos2.sigma.m <- cos(sigma) - (2 * sin(U1) * sin(U2))/ifelse(cos2.alpha == 0, 1e-025, cos2.alpha)
C. <- (flat/16) * (cos2.alpha * (4 + flat * (4 - 3 * cos2.alpha)))
if(verbose) {
cat("sin.sigma =", sin.sigma, "\n")
cat("cos.sigma =", cos.sigma, "\n")
cat("sigma =", sigma, "\n")
cat("sin.alpha =", sin.alpha, "\n")
cat("cos2.alpha =", cos2.alpha, "\n")
cat("cos2.sigma.m =", cos2.sigma.m, "\n")
cat("C =", C., "\n")
cat("lamda diff =", lamda - lamda.old, "\n")
}
lamda.old <- lamda
lamda <- L + (1 - C.) * flat * sin.alpha * (sigma + C. * sin.sigma * (cos2.sigma.m + C. * cos.sigma * (-1 + 2 * cos2.sigma.m^2)))
if(verbose)
cat("New lamda =", lamda, "\n\n")
if(i > 20) {
warning("lamda did not converge")
return(NA)
}
i <- i + 1
}
u2 <- (cos2.alpha * (a^2 - b^2))/b^2
A <- 1 + (u2/16384) * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
B <- (u2/1024) * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))
delta.sigma <- B * sin(sigma) * (cos2.sigma.m + (B/4) * (cos(sigma) * (-1 + 2 * cos2.sigma.m^2) - (B/6) * cos2.sigma.m * (-3 + 4 * sin(sigma)^2) * (
-3 + 4 * cos2.sigma.m^2)))
if(verbose) {
alpha1 <- atan((cos(U2) * sin(lamda))/(cos(U1) * sin(U2) - sin(U1) * cos(U2) * cos(lamda)))
cat("\nalpha1 =", alpha1/rad, "\n")
alpha2 <- atan((cos(U1) * sin(lamda))/( - sin(U1) * cos(U2) + cos(U1) * sin(U2) * cos(lamda)))
cat("alpha2 =", alpha2/rad, "\n\n")
""
cat("2*sigma.m =", acos(cos2.sigma.m), "\n")
""
cat("b =", b, "\n")
cat("A =", A, "\n")
cat("sigma (radians) =", sigma, "\n")
cat("delta.sigma (radians) =", delta.sigma, "\n")
cat("Distance: s = b * A * (sigma - delta.sigma)\n\n")
""
}
s <- (b * A * (sigma - delta.sigma))
switch(units,
m = s,
km = s/1000,
nm = s/1852,
miles = s/1609.344)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.