Description Usage Arguments Value Author(s) References See Also Examples
View source: R/boot.ratio.test.R
Performs bootstrap ratio test which is analogous to a t- or z-score.
1 | boot.ratio.test(boot.cube, critical.value = 2)
|
boot.cube |
an |
critical.value |
numeric. This is the value that would be used as a cutoff in a t- or z-test. Default is 2 (i.e., 1.96 rounded up). The higher the number, the more difficult to reject the null. |
A list with the following items:
return(list(sig.boot.ratios=significant.boot.ratios,boot.ratios=boot.ratios,critical.value=critical.value))
sig.boot.ratios |
This is a matrix with the same number of rows and columns as |
boot.ratios |
This is a matrix with bootstrap ratio values that has the same number of rows and columns as |
critical.value |
the critical value input is also returned. |
Derek Beaton and Hervé Abdi
The name bootstrap ratio comes from the Partial Least Squares in Neuroimaging literature. See:
McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage, 23, S250–S263.
The bootstrap ratio is related to other tests of values with respect to the bootstrap distribution, such as the Interval-t. See:
Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and researchers (Vol. 619). Wiley-Interscience.
Hesterberg, T. (2011). Bootstrap. Wiley Interdisciplinary Reviews: Computational Statistics, 3, 497–526.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ##the following code generates 100 bootstrap resampled
##projections of the measures from the Iris data set.
data(ep.iris)
data <- ep.iris$data
design <- ep.iris$design
iris.pca <- epGPCA(data,scale="SS1",DESIGN=design,make_design_nominal=FALSE)
boot.fjs.unconstrained <- array(0,dim=c(dim(iris.pca$ExPosition.Data$fj),100))
boot.fjs.constrained <- array(0,dim=c(dim(iris.pca$ExPosition.Data$fj),100))
for(i in 1:100){
#unconstrained means we resample any of the 150 flowers
boot.fjs.unconstrained[,,i] <- boot.compute.fj(ep.iris$data,iris.pca)
#constrained resamples within each of the 3 groups
boot.fjs.constrained[,,i] <- boot.compute.fj(data,iris.pca,design,TRUE)
}
#now compute the bootstrap ratios:
ratios.unconstrained <- boot.ratio.test(boot.fjs.unconstrained)
ratios.constrained <- boot.ratio.test(boot.fjs.constrained)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.