Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
warning = FALSE,
message = FALSE,
comment = "#>",
fig.width = 8.5,
fig.height = 6,
eval = Sys.getenv("$RUNNER_OS") != "macOS"
)
## ----message= FALSE, warning=FALSE, echo=FALSE--------------------------------
library(here)
## ----echo=FALSE, out.width="80%"----------------------------------------------
knitr::include_graphics(here("vignettes/point_prev.png"))
## ----echo=FALSE, out.width="80%"----------------------------------------------
knitr::include_graphics(here("vignettes/period_prev.png"))
## ----message=FALSE, warning=FALSE---------------------------------------------
library(IncidencePrevalence)
library(dplyr)
library(tidyr)
library(ggplot2)
library(patchwork)
cdm <- mockIncidencePrevalence(
sampleSize = 20000,
earliestObservationStartDate = as.Date("1960-01-01"),
minOutcomeDays = 365,
outPre = 0.3
)
cdm <- generateDenominatorCohortSet(
cdm = cdm, name = "denominator",
cohortDateRange = c(as.Date("1990-01-01"), as.Date("2009-12-31")),
ageGroup = list(c(0, 150)),
sex = "Both",
daysPriorObservation = 0
)
cdm$denominator %>%
glimpse()
## ----message= FALSE, warning=FALSE--------------------------------------------
prev <- estimatePointPrevalence(
cdm = cdm,
denominatorTable = "denominator",
outcomeTable = "outcome",
interval = "Years"
)
prev %>%
glimpse()
plotPrevalence(prev)
## ----message= FALSE, warning=FALSE--------------------------------------------
outcome_plot <- plotPrevalencePopulation(result = prev, y = "outcome_count") + xlab("") +
theme(axis.text.x = element_blank()) +
ggtitle("a) Number of outcomes by year")
denominator_plot <- plotPrevalencePopulation(result = prev) +
ggtitle("b) Number of people in denominator population by year")
outcome_plot / denominator_plot
## ----message= FALSE, warning=FALSE--------------------------------------------
prev <- estimatePointPrevalence(
cdm = cdm,
denominatorTable = "denominator",
outcomeTable = "outcome",
interval = "Months"
)
prev %>%
glimpse()
plotPrevalence(prev)
## ----message= FALSE, warning=FALSE--------------------------------------------
prev <- estimatePointPrevalence(
cdm = cdm,
denominatorTable = "denominator",
outcomeTable = "outcome",
interval = "Years",
timePoint = "middle"
)
prev %>%
glimpse()
plotPrevalence(prev, line = FALSE)
## ----message= FALSE, warning=FALSE--------------------------------------------
prev <- estimatePeriodPrevalence(
cdm = cdm,
denominatorTable = "denominator",
outcomeTable = "outcome",
interval = "Years"
)
prev %>%
glimpse()
plotPrevalence(prev)
## ----message= FALSE, warning=FALSE--------------------------------------------
prev <- estimatePeriodPrevalence(
cdm = cdm,
denominatorTable = "denominator",
outcomeTable = "outcome",
interval = "Months"
)
prev %>%
glimpse()
plotPrevalence(prev)
## ----message= FALSE, warning=FALSE--------------------------------------------
prev <- estimatePeriodPrevalence(
cdm = cdm,
denominatorTable = "denominator",
outcomeTable = "outcome",
interval = "Months",
fullContribution = FALSE
)
prev %>%
glimpse()
plotPrevalence(prev)
## -----------------------------------------------------------------------------
cdm <- generateDenominatorCohortSet(
cdm = cdm, name = "denominator_age_sex",
cohortDateRange = c(as.Date("1990-01-01"), as.Date("2009-12-31")),
ageGroup = list(
c(0, 39),
c(41, 65),
c(66, 150)
),
sex = "Both",
daysPriorObservation = 0
)
prev <- estimatePeriodPrevalence(
cdm = cdm,
denominatorTable = "denominator_age_sex",
outcomeTable = "outcome"
)
plotPrevalence(prev) +
facet_wrap(vars(denominator_age_group), ncol = 1)
## ----message= FALSE, warning=FALSE--------------------------------------------
denominator_plot <- plotPrevalencePopulation(result = prev)
denominator_plot +
facet_wrap(vars(denominator_age_group), ncol = 1)
## -----------------------------------------------------------------------------
cdm$denominator <- cdm$denominator %>%
mutate(group = if_else(as.numeric(subject_id) < 500, "first", "second"))
prev <- estimatePeriodPrevalence(
cdm = cdm,
denominatorTable = "denominator",
outcomeTable = "outcome",
strata = "group"
)
plotPrevalence(prev,
colour = "group"
) +
facet_wrap(vars(group), ncol = 1)
## ----fig.width=13-------------------------------------------------------------
cdm$denominator <- cdm$denominator %>%
mutate(
group_1 = if_else(as.numeric(subject_id) < 1500, "first", "second"),
group_2 = if_else(as.numeric(subject_id) < 1000, "one", "two")
)
prev <- estimatePeriodPrevalence(
cdm = cdm,
denominatorTable = "denominator",
outcomeTable = "outcome",
strata = list(
c("group_1"), # for just group_1
c("group_2"), # for just group_2
c("group_1", "group_2")
) # for group_1 and group_2
)
plotPrevalence(prev) +
facet_wrap(vars(group_1, group_2), ncol = 2)
## ----message= FALSE, warning=FALSE--------------------------------------------
prev <- estimatePeriodPrevalence(
cdm = cdm,
denominatorTable = "denominator",
outcomeTable = "outcome",
interval = "Years",
fullContribution = TRUE
)
tablePrevalenceAttrition(prev, style = "darwin")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.