IntegratedMRF: Integrated Prediction using Univariate and Multivariate Random Forests
Version 1.1.5

An implementation of a framework for drug sensitivity prediction from various genetic characterizations using ensemble approaches. Random Forests or Multivariate Random Forest predictive models can be generated from each genetic characterization that are then combined using a Least Square Regression approach. It also provides options for the use of different error estimation approaches of Leave-one-out, Bootstrap, N-fold cross validation and 0.632+Bootstrap along with generation of prediction confidence interval using Jackknife-after-Bootstrap approach.

Browse man pages Browse package API and functions Browse package files

AuthorRaziur Rahman, Ranadip Pal
Date of publication2016-08-10 21:28:56
MaintainerRaziur Rahman <razeeebuet@gmail.com>
LicenseGPL-3
Version1.1.5
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("IntegratedMRF")

Man pages

build_forest_predict: Prediction using Random Forest or Multivariate Random Forest
build_single_tree: Model of a single tree of Random Forest or Multivariate...
Combination: Weights for combination of predictions from different data...
CombPredict: Integrated Prediction of Testing samples using Combination...
CombPredictSpecific: Prediction for testing samples using specific combination...
CrossValidation: Generate training and testing samples for cross validation
Dream_Dataset: NCI-Dream Drug Sensitivity Prediction Challenge Dataset
error_calculation: Error calculation for integrated model
Imputation: Imputation of a numerical vector
IntegratedPrediction: Integrated Prediction of Testing samples from integrated RF...
Node_cost: Information Gain
predicting: Prediction of testing sample in a node
single_tree_prediction: Prediction of Testing Samples for single tree
split_node: Splitting Criteria of all the nodes of the tree
splitt: Split of the Parent node

Functions

CombPredict Man page Source code
CombPredictSpecific Man page Source code
Combination Man page Source code
CrossValidation Man page Source code
Dream_Dataset Man page
Imputation Man page Source code
IntegratedPrediction Man page Source code
Node_cost Man page Source code
build_forest_predict Man page Source code
build_single_tree Man page Source code
error_calculation Man page Source code
predicting Man page Source code
single_tree_prediction Man page Source code
split_node Man page Source code
splitt Man page Source code

Files

src
src/Node_Cost_C.cpp
src/RcppExports.cpp
NAMESPACE
data
data/Dream_Dataset.RData
R
R/Dream_Dataset.R
R/CrossValidation.R
R/single_tree_prediction.R
R/Imputation.R
R/error_calculation.R
R/CombPredict.R
R/build_forest_predict.R
R/RcppExports.R
R/CombPredictSpecific.R
R/build_single_tree.R
R/IntegratedMRF.R
R/IntegratedPrediction.R
MD5
DESCRIPTION
man
man/single_tree_prediction.Rd
man/CombPredictSpecific.Rd
man/split_node.Rd
man/Node_cost.Rd
man/predicting.Rd
man/build_single_tree.Rd
man/splitt.Rd
man/CombPredict.Rd
man/Imputation.Rd
man/IntegratedPrediction.Rd
man/Combination.Rd
man/CrossValidation.Rd
man/build_forest_predict.Rd
man/Dream_Dataset.Rd
man/error_calculation.Rd
IntegratedMRF documentation built on May 20, 2017, 12:03 a.m.