IntegratedMRF: Integrated Prediction using Univariate and Multivariate Random Forests

Share:

An implementation of a framework for drug sensitivity prediction from various genetic characterizations using ensemble approaches. Random Forests or Multivariate Random Forest predictive models can be generated from each genetic characterization that are then combined using a Least Square Regression approach. It also provides options for the use of different error estimation approaches of Leave-one-out, Bootstrap, N-fold cross validation and 0.632+Bootstrap along with generation of prediction confidence interval using Jackknife-after-Bootstrap approach.

Author
Raziur Rahman, Ranadip Pal
Date of publication
2016-08-10 21:28:56
Maintainer
Raziur Rahman <razeeebuet@gmail.com>
License
GPL-3
Version
1.1.5

View on CRAN

Man pages

build_forest_predict
Prediction using Random Forest or Multivariate Random Forest
build_single_tree
Model of a single tree of Random Forest or Multivariate...
Combination
Weights for combination of predictions from different data...
CombPredict
Integrated Prediction of Testing samples using Combination...
CombPredictSpecific
Prediction for testing samples using specific combination...
CrossValidation
Generate training and testing samples for cross validation
Dream_Dataset
NCI-Dream Drug Sensitivity Prediction Challenge Dataset
error_calculation
Error calculation for integrated model
Imputation
Imputation of a numerical vector
IntegratedPrediction
Integrated Prediction of Testing samples from integrated RF...
Node_cost
Information Gain
predicting
Prediction of testing sample in a node
single_tree_prediction
Prediction of Testing Samples for single tree
split_node
Splitting Criteria of all the nodes of the tree
splitt
Split of the Parent node

Files in this package

IntegratedMRF
IntegratedMRF/src
IntegratedMRF/src/Node_Cost_C.cpp
IntegratedMRF/src/RcppExports.cpp
IntegratedMRF/NAMESPACE
IntegratedMRF/data
IntegratedMRF/data/Dream_Dataset.RData
IntegratedMRF/R
IntegratedMRF/R/Dream_Dataset.R
IntegratedMRF/R/CrossValidation.R
IntegratedMRF/R/single_tree_prediction.R
IntegratedMRF/R/Imputation.R
IntegratedMRF/R/error_calculation.R
IntegratedMRF/R/CombPredict.R
IntegratedMRF/R/build_forest_predict.R
IntegratedMRF/R/RcppExports.R
IntegratedMRF/R/CombPredictSpecific.R
IntegratedMRF/R/build_single_tree.R
IntegratedMRF/R/IntegratedMRF.R
IntegratedMRF/R/IntegratedPrediction.R
IntegratedMRF/MD5
IntegratedMRF/DESCRIPTION
IntegratedMRF/man
IntegratedMRF/man/single_tree_prediction.Rd
IntegratedMRF/man/CombPredictSpecific.Rd
IntegratedMRF/man/split_node.Rd
IntegratedMRF/man/Node_cost.Rd
IntegratedMRF/man/predicting.Rd
IntegratedMRF/man/build_single_tree.Rd
IntegratedMRF/man/splitt.Rd
IntegratedMRF/man/CombPredict.Rd
IntegratedMRF/man/Imputation.Rd
IntegratedMRF/man/IntegratedPrediction.Rd
IntegratedMRF/man/Combination.Rd
IntegratedMRF/man/CrossValidation.Rd
IntegratedMRF/man/build_forest_predict.Rd
IntegratedMRF/man/Dream_Dataset.Rd
IntegratedMRF/man/error_calculation.Rd