Nothing
# Data used for testing Cressman
# Date of test creation: 2025-01-01
# Test update date: 2025-09-01
# Data input
data("BD_Obs", package = "InterpolateR")
data("BD_Coord", package = "InterpolateR")
# load area
shapefile <- terra::vect(system.file(
"extdata/study_area.shp",
package = "InterpolateR"
))
# Skip cran
testthat::skip_on_cran()
# 1. Testing without validation ---------------------------------------------------
testthat::test_that("Cressman returns SpatRaster without validation.", {
testthat::skip_on_cran()
out <- Cressman(
BD_Obs,
BD_Coord,
shapefile,
grid_resolution = 5,
search_radius = 10,
training = 1,
stat_validation = NULL,
Rain_threshold = NULL,
save_model = FALSE
)
testthat::expect_true(inherits(out$`10 km`, "SpatRaster"))
testthat::expect_equal(terra::nlyr(out$`10 km`), length(unique(BD_Obs$Date)))
})
# 2. Testing with validation (random validation) --------------------------------
testthat::test_that("Cressman returns SpatRaster with random validation.", {
testthat::skip_on_cran()
out <- Cressman(
BD_Obs,
BD_Coord,
shapefile,
grid_resolution = 5,
search_radius = 10,
training = 0.8,
stat_validation = NULL,
n_round = 2,
Rain_threshold = NULL,
save_model = FALSE
)
testthat::expect_true(inherits(out$Ensamble$`10 km`, "SpatRaster"))
testthat::expect_equal(
terra::nlyr(out$Ensamble$`10 km`),
length(unique(BD_Obs$Date))
)
testthat::expect_true(inherits(out$Validation$`10 km`, "data.table"))
})
# 3. Testing with validation (manual validation) --------------------------------
testthat::test_that("Cressman returns SpatRaster with manual validation.", {
testthat::skip_on_cran()
out <- Cressman(
BD_Obs,
BD_Coord,
shapefile,
grid_resolution = 5,
search_radius = 10,
training = 1,
stat_validation = "M001",
Rain_threshold = NULL,
save_model = FALSE
)
testthat::expect_true(inherits(out$Ensamble$`10 km`, "SpatRaster"))
testthat::expect_equal(
terra::nlyr(out$Ensamble$`10 km`),
length(unique(BD_Obs$Date))
)
testthat::expect_true(inherits(out$Validation$`10 km`, "data.table"))
})
##############################################################################
# Check that the algorithm stops when the input data is not correct. #
##############################################################################
# 4. shapefile must be a 'SpatVector' object. ----------------------------------
testthat::test_that("Error if `shapefile` is not SpatVector.", {
testthat::skip_on_cran()
bad_shape <- data.frame(x = 1:10, y = rnorm(10))
testthat::expect_error(
Cressman(
BD_Obs,
BD_Coord,
bad_shape,
grid_resolution = 5,
search_radius = 10,
training = 1,
stat_validation = "M001",
Rain_threshold = NULL,
save_model = FALSE
),
regexp = "shapefile must be a 'SpatVector' with a defined CRS\\.$"
)
})
# 5. BD_Obs must be a 'data.table' or a 'data.frame'." -------------------------
testthat::test_that("Error if `BD_Obs` is not a data.table or data.frame.", {
testthat::skip_on_cran()
bad_obs <- list(x = 1:10, y = rnorm(10))
testthat::expect_error(
Cressman(
bad_obs,
BD_Coord,
shapefile,
grid_resolution = 5,
search_radius = 10,
training = 1,
stat_validation = "M001",
Rain_threshold = NULL,
save_model = FALSE
),
regexp = "BD_Obs must be a 'data.table' or a 'data.frame'\\.$"
)
})
# 6. BD_Coord must be a 'data.table' or a 'data.frame'." -----------------------
testthat::test_that("Error if `BD_Coord` is not a data.table or data.frame.", {
testthat::skip_on_cran()
bad_coord <- list(x = 1:10, y = rnorm(10))
testthat::expect_error(
Cressman(
BD_Obs,
bad_coord,
shapefile,
grid_resolution = 5,
search_radius = 10,
training = 1,
stat_validation = "M001",
Rain_threshold = NULL,
save_model = FALSE
),
regexp = "BD_Coord must be a 'data.table' or a 'data.frame'\\.$"
)
})
# 7. "The names of the coordinates do not appear in the observed data." --------
testthat::test_that("Error if coordinates names do not appear in observed data.", {
testthat::skip_on_cran()
# Crear copia de BD_Coord con un código inválido
bad_coord <- BD_Coord
bad_coord[3, "Cod"] <- "x"
# Esperamos que falle con mensaje que mencione "do not appear" y el código "x"
testthat::expect_error(
Cressman(
BD_Obs,
bad_coord,
shapefile,
grid_resolution = 5,
search_radius = 10,
training = 1,
stat_validation = "M001",
Rain_threshold = NULL,
save_model = FALSE
),
regexp = "do not appear.*x"
)
})
# 8. "Save the model must be a logical value." ---------------------------------
testthat::test_that("Cressman saves model when save_model = TRUE (default name)", {
testthat::skip_on_cran()
temp_dir <- tempdir()
withr::local_dir(temp_dir)
expect_message(
out <- Cressman(
BD_Obs,
BD_Coord,
shapefile,
grid_resolution = 5,
search_radius = 10,
training = 1,
stat_validation = "M001",
Rain_threshold = NULL,
save_model = TRUE
),
"Model saved successfully"
)
expected_file <- file.path(temp_dir, "Radius_10 km.nc")
testthat::expect_true(file.exists(expected_file), info = expected_file)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.