Nothing
test_that("Mean number of events in bladder did not change",{
expect_snapshot({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(50),
ci_fit = FALSE)
})
})
test_that("Difference is correct",{
expect_equal({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
type = "diff",
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
exposed = \(x) transform(x, thiotepa = 1),
t = c(50),
ci_fit = FALSE)[["fit"]]
}, {
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
e0 <- predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(50),
ci_fit = FALSE)
e1 <- predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 1),
t = c(50),
ci_fit = FALSE)
e0$fit - e1$fit
})
})
test_that("Parallel: Check calc CIs for mean number",{
skip_on_cran()
expect_snapshot({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(50),
ci_fit = TRUE) |>
print(digits = 4)
})
})
test_that("Parallel: Check calc CIs for diff in mean number",{
skip_on_cran()
expect_snapshot({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
type = "diff",
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
exposed = \(x) transform(x, thiotepa = 1),
t = c(50),
ci_fit = TRUE) |>
print(digits = 4)
})
})
test_that("Parallel: Check calc CIs for marg mean number",{
skip_on_cran()
expect_snapshot({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa + size,
ce_model = ~ pyridoxine + thiotepa + size,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(10),
type = "marg_mean_no",
ci_fit = TRUE) |>
print(digits = 4)
})
})
test_that("Parallel: Check calc CIs for diff in marg mean number",{
skip_on_cran()
expect_snapshot({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa + size,
ce_model = ~ pyridoxine + thiotepa + size,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
type = "marg_diff",
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
exposed = \(x) transform(x, thiotepa = 1),
t = c(50),
ci_fit = TRUE) |>
print(digits = 4)
})
})
test_that("S_M(t|x) == S(t|x)", {
expect_equal({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(10),
type = "mean_no",
ci_fit = FALSE)
}, {
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(10),
type = "marg_mean_no",
ci_fit = FALSE)
})
})
test_that("Point estimate is the same if ci_fit == TRUE or FALSE", {
expect_equal({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(10),
type = "marg_mean_no",
ci_fit = TRUE)$est
}, {
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(10),
type = "marg_mean_no",
ci_fit = FALSE)$est
})
})
test_that("S_M(t|x0) - S_M(t|x1) == S(t|x0) - S(t|x1)", {
expect_equal(
{
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
exposed = function(x) transform(x, pyridoxine = 0, thiotepa = 1),
t = c(10),
type = "diff",
ci_fit = FALSE)$est
} , {
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
exposed = function(x) transform(x, pyridoxine = 0, thiotepa = 1),
t = c(10),
type = "marg_diff",
ci_fit = FALSE)$est
})
})
test_that("Error when newdata is not a data.frame",{
expect_error({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = list(pyridoxine = 1,
thiotepa = 0),
t = c(10),
type = "mean_no",
ci_fit = FALSE)
}, regexp = "`newdata` is not a `data.frame`")
})
test_that("Error when newdata has more than one row",{
expect_error({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 0:1,
thiotepa = 0),
t = c(10),
type = "mean_no",
ci_fit = FALSE)
}, regexp = "`newdata` has more than one row")
})
test_that("Error when chosing a wrong prediction type",{
expect_error({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 0:1,
thiotepa = 0),
t = c(10),
type = "merg_no",
ci_fit = FALSE)
})
})
test_that("Error when forgetting to specify exposed",{
expect_error({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(10),
type = "marg_diff",
ci_fit = FALSE)
}, regexp = "without specifing an exposed group")
})
test_that("Error when exposed is not a function",{
expect_error({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
exposed = data.frame(pyridoxine = 0,
thiotepa = 1),
t = c(10),
type = "marg_diff",
ci_fit = FALSE)
}, regexp = "`exposed` is not a function.")
})
test_that("Error when var is not included in newdata",{
expect_error({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa + size,
ce_model = ~ pyridoxine + thiotepa + size,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1),
t = c(10),
type = "mean_no",
ci_fit = FALSE)
}, regexp = "thiotepa and size are not included in `newdata`")
})
test_that("Test integration when t == 0",{
expect_equal({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(0),
type = "mean_no",
ci_fit = FALSE)$fit
}, NA_real_)
})
test_that("Integration with GQ works", {
expect_snapshot({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(1, 50, 100),
method = "gq",
ngq = 30,
ci_fit = FALSE)
})
})
test_that("GQ gives results similar to Romberg Integration", {
expect_equal({
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(1, 50, 100),
method = "gq",
ngq = 200,
ci_fit = FALSE)
}, {
bldr_model <- JointFPM(Surv(time = start,
time2 = stop,
event = event,
type = 'counting') ~ 1,
re_model = ~ pyridoxine + thiotepa,
ce_model = ~ pyridoxine + thiotepa,
re_indicator = "re",
ce_indicator = "ce",
df_ce = 3,
df_re = 3,
cluster = "id",
data = bladder1_stacked)
predict(bldr_model,
newdata = data.frame(pyridoxine = 1,
thiotepa = 0),
t = c(1, 50, 100),
ci_fit = FALSE)
},
tolerance = 0.001)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.