R/coef.KFS.R

Defines functions coef.SSModel coef.KFS

Documented in coef.KFS coef.SSModel

#' Smoothed Estimates or One-step-ahead Predictions of States
#'
#' Compute smoothed estimates or one-step-ahead predictions of states of
#' \code{SSModel} object or extract them from output of \code{KFS}.
#' For non-Gaussian models without simulation (\code{nsim = 0}),
#' these are the estimates of conditional modes of
#' states. For Gaussian models and non-Gaussian models with importance sampling,
#' these are the estimates of conditional means of states.
#'
#' @export
#' @importFrom stats coef window
#' @name coef.SSModel
#' @param object An object of class \code{KFS} or \code{SSModel}.
#' @param start The start time of the period of interest. Defaults to first time
#'  point of the object.
#' @param end The end time of the period of interest. Defaults to the last time
#' point of the object.
#' @param filtered Logical, return filtered instead of smoothed estimates of
#' state vector. Default is \code{FALSE}.
#' @param states Which states to extract? Either a numeric vector containing
#'  the indices of the corresponding states, or a character vector defining the
#'  types of the corresponding states. Possible choices are
#'   \code{"all"},  \code{"level"}, \code{"slope"},
#'   \code{"trend"},  \code{"regression"}, \code{"arima"}, \code{"custom"},
#'   \code{"cycle"} or \code{"seasonal"}, where \code{"trend"} extracts all states
#'   relating to trend. These can be combined. Default is \code{"all"}.
#' @param last If \code{TRUE}, extract only the last time point as numeric vector
#'   (ignoring \code{start} and \code{end}). Default is \code{FALSE}.
#' @param nsim Only for method for for non-Gaussian model of class \code{SSModel}.
#' The number of independent samples used in importance sampling.
#' Default is 0, which computes the
#' approximating Gaussian model by \code{\link{approxSSM}} and performs the
#' usual Gaussian filtering/smoothing so that the smoothed state estimates
#' equals to the conditional mode of \eqn{p(\alpha_t|y)}{p(\alpha[t]|y)}.
#' In case of \code{nsim = 0}, the mean estimates and their variances are computed using
#' the Delta method (ignoring the covariance terms).
#' @param \dots Additional arguments to \code{\link{KFS}}.
#' Ignored in method for object of class \code{KFS}.
#' @return Multivariate time series containing estimates states.
#' @examples
#'
#' model <- SSModel(log(drivers) ~ SSMtrend(1, Q = list(1)) +
#'  SSMseasonal(period = 12, sea.type = "trigonometric") +
#'  log(PetrolPrice) + law, data = Seatbelts, H = 1)
#'
#' coef(model, states = "regression", last = TRUE)
#' coef(model, start = c(1983, 12), end = c(1984, 2))
#' out <- KFS(model)
#' coef(out, states = "regression", last = TRUE)
#' coef(out, start = c(1983, 12), end = c(1984, 2))
#'
coef.KFS <- function(object, start = NULL, end = NULL, filtered = FALSE,
  states = "all", last = FALSE, ...) {

  if (!filtered) {
    if ("alphahat" %in% names(object)) {
      tmp <- object$alphahat
    } else stop("Input does not contain smoothed estimates for states, rerun KFS with state smoothing.")
  } else {
    if ("a" %in% names(object)) {
      tmp <- object$a
    } else stop("Input does not contain filtered estimates for states, rerun KFS with state filtering.")
  }
  if (is.numeric(states)) {
    states <- as.integer(states)
    if (min(states) < 1 | max(states) > attr(object$model, "m"))
      stop("Vector states should contain the indices or names (state types) of the states.")
  } else {
    states <- match.arg(arg = states,
      choices = c("all", "arima", "custom", "level","slope", "cycle",
        "seasonal", "trend", "regression"),
      several.ok = TRUE)

    if ("all" %in% states) {
      states <- 1:object$dims$m
    } else {
      if (identical(object$model, "not stored")) stop("No model stored as part of KFS, cannot infer state types.")
      if ("trend" %in% states) {
        states <- c(states, "level", "slope")
      }
      states <- which(attr(object$model, "state_types") %in% states)
    }
  }
  if (last) {
    window(tmp[, states, drop = FALSE], start = end(tmp), end = end(tmp))[1, ]
  } else {
    tmp <- window(tmp[, states, drop = FALSE], start = start, end = end)
    if (!is.null(start) && identical(start,end)) {
      tmp[1, ]
    } else {
      drop(tmp)
    }
  }
}

#' @export
#' @rdname coef.SSModel
coef.SSModel <- function(object, start = NULL, end = NULL, filtered = FALSE,
  states = "all", last = FALSE, nsim = 0, ...) {

  if (filtered) {
    out <- KFS(object, filtering = "state", smoothing = "none", nsim = nsim, ...)
  } else {
    out <- KFS(object, filtering = "none", smoothing = "state", nsim = nsim, ...)
  }

  coef(out, start, end, filtered, states, last)
}

Try the KFAS package in your browser

Any scripts or data that you put into this service are public.

KFAS documentation built on Sept. 8, 2023, 5:56 p.m.