Description Usage Arguments Value Author(s) References Examples
Build a random forest model once and return AUC for both training prediction (out-of-bag predictions) and test prediction. Work for classification only.
1 | rf.once(X.train, Y.train, X.test, Y.test, fea)
|
X.train |
a data frame or matrix (like x) containing predictors for the training set. |
Y.train |
response for the training set. If a factor, classification is assumed, otherwise regression is assumed. If omitted, will run in unsupervised mode. |
X.test |
an optional data frame or matrix (like x) containing predictors for the test set. |
Y.test |
optional response for the test set. |
fea |
feature index or feature names used to train the model. |
return a list, including
AUC |
AUC calculated from out-of-bag prediction from random forest classification model |
Test.AUC |
AUC calculated from test prediction from random forest classification model. Only available when test set is given |
Li Liu, Xin Guan
Guan, X., & Liu, L. (2018). Know-GRRF: Domain-Knowledge Informed Biomarker Discovery with Random Forests.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ##---- Example: classification ----
library(randomForest)
library(PRROC)
set.seed(1)
X<-data.frame(matrix(rnorm(100*100), nrow=100))
b=seq(0.1, 2.2, 0.2)
##y has a linear relationship with first 10 variables
y=b[6]*X$X5+b[7]*X$X6+b[8]*X$X7+b[9]*X$X8+b[10]*X$X9+b[11]*X$X10
y=as.factor(ifelse(y>0, 1, 0)) ##classification
##split training and test set
X.train=X[1:70,]
X.test=X[71:100,]
y.train=y[1:70]
y.test=y[71:100]
rf.once(X.train, y.train, fea=1:20) ##no test set
rf.once(X.train, y.train, X.test, y.test, 1:10) ##relevant feature set
rf.once(X.train, y.train, X.test, y.test, 11:20) ##irrelevant feature set
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.