Description Usage Arguments Value References See Also Examples
Estimates the autoressive coefficients in the X_t = ρ' Z_t + ξ_t where Z_t is the vector of q observations at times t-1,...,t-q.
1 | KoulArMde(X, AR_Order, IntMeasure, TuningConst = 1.345)
|
X |
- Vector of |
AR_Order |
- Order of the autoregression model. |
IntMeasure |
- Symmetric and σ-finite measure: Lebesgue, Degenerate, and Robust |
TuningConst |
- Used only for Robust measure. |
rhohat - Minimum distance estimator of ρ.
residual - Residuals after minimum distance estimation.
ObjVal - Value of the objective function at minimum distance estimator.
[1] Kim, J. (2018). A fast algorithm for the coordinate-wise minimum distance estimation. J. Stat. Comput. Simul., 3: 482 - 497
[2] Kim, J. (2020). Minimum distance estimation in linear regression model with strong mixing errors. Commun. Stat. - Theory Methods., 49(6): 1475 - 1494
[3] Koul, H. L (1985). Minimum distance estimation in linear regression with unknown error distributions. Statist. Probab. Lett., 3: 1-8.
[4] Koul, H. L (1986). Minimum distance estimation and goodness-of-fit tests in first-order autoregression. Ann. Statist., 14 1194-1213.
[5] Koul, H. L (2002). Weighted empirical process in nonlinear dynamic models. Springer, Berlin, Vol. 166
KoulLrMde() and Koul2StageMde()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ##### Generate stationary AR(2) process with 10 observations
n <- 10
q <- 2
rho <- c(-0.2, 0.8) ##### Generate true parameters rho = (-0.2, 0.8)'
eps <- rnorm(n, 0,1) ##### Generate innovations from N(0,1)
X <- rep(0, times=n)
for (i in 1:n){
tempCol <- rep(0, times=q)
for (j in 1:q){
if(i-j<=0){
tempCol[j] <- 0
}else{
tempCol[j] <- X[i-j]
}
}
X[i] <- t(tempCol)%*% rho + eps[i]
}
IntMeasure <- "Lebesgue" ##### Define Lebesgue measure
MDEResult <- KoulArMde(X, q, IntMeasure, TuningConst=1.345)
rhohat <- MDEResult$rhohat ##### Obtain minimum distance estimator
resid <- MDEResult$residual ##### Obtain residual
objVal <- MDEResult$ObjVal ##### Obtain the value of the objective function
IntMeasure <- "Degenerate" ##### Define degenerate measure at 0
MDEResult <- KoulArMde(X, q, IntMeasure, TuningConst=1.345)
rhohat <- MDEResult$rhohat ##### Obtain minimum distance estimator
resid <- MDEResult$residual ##### Obtain residual
objVal <- MDEResult$ObjVal ##### Obtain the value of the objective function
IntMeasure <- "Robust" ##### Define "Robust" measure at 0
TuningConst <- 3 ##### Define the tuning constant
MDEResult <- KoulArMde(X, q, IntMeasure, TuningConst)
resid <- MDEResult$residual ##### Obtain residual
objVal <- MDEResult$ObjVal ##### Obtain the value of the objective function
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.