PRGM.action: Based on the Robust Bayes Approach, Performs a Multiple...

Description Usage Arguments Value Author(s) References Examples

Description

Assuming a squared error loss function, it provides Robust Bayes estimates of the LFDR estimates giving credit to both separate and combined reference classes.

Usage

1
PRGM.action(x1,x2)

Arguments

x1

Input numeric vector of LFDR estimates of the separate reference class.

x2

Input numeric vector of LFDR estimated of the combined reference class.

Value

The output is a vector of the LFDR estimates based on the two reference classes.

Author(s)

Code: Ali Karimnezhad.
Documentation: Johnary Kim and Anna Akpawu.

References

Karimnezhad, A. and Bickel, D. R. (2016). Incorporating prior knowledge about genetic variants into the analysis of genetic association data: An empirical Bayes approach. Working paper. Retrieved from http://hdl.handle.net/10393/34889

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
#LFDR reference class values generated

#First reference class
LFDR.Separate <- c(0.14, 0.8, 0.16, 0.30)
#Second reference class
LFDR.Combined <- c(0.21, 0.61, 0.12, 0.10)

output <- PRGM.action(LFDR.Separate, LFDR.Combined)

# Vector of the LFDR estimates
output

LFDREmpiricalBayes documentation built on May 2, 2019, 6:38 a.m.