Small experiment with LLMR

knitr::opts_chunk$set(
  collapse = TRUE, comment = "#>",
  eval = identical(tolower(Sys.getenv("LLMR_RUN_VIGNETTES", "false")), "true") )

We will compare three configurations on two prompts, once unstructured and once with structured output. In choosing models, note that at the time of writing this vignette, Gemini models are not guaranteeing the schema output and is more likely to run into trouble.

library(LLMR)
library(dplyr)
cfg_openai <- llm_config("openai",   "gpt-5-nano")
cfg_cld    <- llm_config("anthropic","claude-sonnet-4-20250514", max_tokens = 512)
cfg_gem    <- llm_config("groq",     "openai/gpt-oss-20b")

Build a factorial design

experiments <- build_factorial_experiments(
  configs       = list(cfg_openai, cfg_cld, cfg_gem),
  user_prompts  = c("Summarize in one sentence: The Apollo program.",
                    "List two benefits of green tea."),
  system_prompts = c("Be concise.")
)
experiments

Run unstructured

setup_llm_parallel(workers = 10)
res_unstructured <- call_llm_par(experiments, progress = TRUE)
reset_llm_parallel()
res_unstructured |>
  select(provider, model, user_prompt_label, response_text, finish_reason) |>
  head()

Structured version

schema <- list(
  type = "object",
  properties = list(
    answer = list(type="string"),
    keywords = list(type="array", items = list(type="string"))
  ),
  required = list("answer","keywords"),
  additionalProperties = FALSE
)

experiments2 <- experiments
experiments2$config <- lapply(experiments2$config, enable_structured_output, schema = schema)

setup_llm_parallel(workers = 10)
res_structured <- call_llm_par_structured(experiments2 , .fields = c("answer","keywords") )
reset_llm_parallel()

res_structured |>
  select(provider, model, user_prompt_label, structured_ok, answer) |>
  head()


Try the LLMR package in your browser

Any scripts or data that you put into this service are public.

LLMR documentation built on Aug. 26, 2025, 9:08 a.m.