Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = identical(tolower(Sys.getenv("LLMR_RUN_VIGNETTES", "false")), "true") )
We’ll show both unstructured and structured pipelines, using four model names: - gpt-5-nano (OpenAI) - claude-sonnet-4-20250514 (Anthropic) - gemini-2.5-flash (Gemini) - openai/gpt-oss-20b (Groq)
You will need environment variables OPENAI_API_KEY, ANTHROPIC_API_KEY, GEMINI_API_KEY, GROQ_API_KEY.
library(LLMR) library(dplyr) cfg_openai <- llm_config("openai", "gpt-5-nano") cfg_cld <- llm_config("anthropic","claude-sonnet-4-20250514", max_tokens = 512) # avoid warnings; Anthropic requires max_tokens cfg_gemini <- llm_config("gemini", "gemini-2.5-flash") cfg_groq <- llm_config("groq", "openai/gpt-oss-20b")
words <- c("excellent", "awful", "fine") out <- llm_fn( words, prompt = "Classify '{x}' as Positive, Negative, or Neutral.", .config = cfg_openai, .return = "columns" ) out
out_groq <- llm_fn( words, prompt = "Classify '{x}' as Positive, Negative, or Neutral.", .config = cfg_groq, .return = "columns" ) out_groq
schema <- list( type = "object", properties = list( label = list(type = "string", description = "Sentiment label"), score = list(type = "number", description = "Confidence 0..1") ), required = list("label", "score"), additionalProperties = FALSE ) out_s <- llm_fn_structured( x = words, prompt = "Classify '{x}' as Positive, Negative, or Neutral with confidence.", .config = cfg_openai, .schema = schema, .fields = c("label", "score") ) out_s
df <- tibble::tibble( id = 1:3, text = c("Cats are great pets", "The weather is bad", "I like tea") ) df_u <- df |> llm_mutate( answer, prompt = "Give a short category for: {text}", .config = cfg_cld, .return = "columns" ) df_u
schema2 <- list( type = "object", properties = list( category = list(type = "string"), rationale = list(type = "string") ), required = list("category", "rationale"), additionalProperties = FALSE ) df_s <- df |> llm_mutate_structured( annot, prompt = "Extract category and a one-sentence rationale for: {text}", .config = cfg_gemini, .schema = schema2 # Because a schema is present, fields auto-hoist; you can also pass: # .fields = c("category", "rationale") ) df_s
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.