Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE,
comment = "#>")
## ----setup, warning = FALSE, include = FALSE----------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
out.width = "672px",
out.height = "480px",
fig.width = 7,
fig.height = 5,
fig.align = "center",
fig.retina = 1,
dpi = 150
)
library("ggplot2")
library("rmarkdown")
library("knitr")
library("ggformula")
library("patchwork")
library( "LMD")
# # installing all required packages
# list.of.packages <- c("ggplot2",
# "rmarkdown",
# "knitr",
# "ggformula",
# "patchwork",
# "LMD")
#
# new.packages <-
# list.of.packages[!(list.of.packages %in% installed.packages()[, "Package"])]
# if (length(new.packages))
# install.packages(new.packages, dependencies = TRUE)
#
# # Loading the required libraries
# lapply(list.of.packages, library, character.only = T)
options(expressions = 10000)
## ----echo=TRUE,message=FALSE,warning=FALSE------------------------------------
fs <- 2000 #Sampling Frequency
time_component <- seq(from = 0, to = 9, by = 1 / fs)
# Simulated Signal
signal <- (0.25 * time_component + sin(pi * time_component) + sin(2 * pi * time_component) +
sin(6 * pi * time_component))
dummy_df <- data.frame(Time = time_component, Value = signal)
p1 <- ggplot(dummy_df) +
aes(x = Time, y = Value) +
geom_spline(size = 2, colour = "#1D2B71") +
scale_color_hue() +
labs(title = "Fig 1. Sample Signal") +
theme_minimal() +
theme(legend.position = "none")
plot(p1)
## ----echo=TRUE,message=FALSE,warning=FALSE------------------------------------
extreme_values <- LMD::find_extrema(signal)
p2 <- ggplot() +
geom_spline(
data = dummy_df,
aes(x = Time, y = Value),
size = 2,
colour = "#1D2B71"
) +
geom_point(aes(x = dummy_df$Time[extreme_values], y = dummy_df$Value[extreme_values]),
size = 5,
colour = "red") +
scale_color_hue() +
labs(title = "Fig 2. Sifting Process: (1)") +
theme_minimal() +
theme(legend.position = "none")
plot(p2)
## ----echo=TRUE,message=FALSE,warning=FALSE------------------------------------
extreme_values <- LMD::find_extrema(signal)
ma_enve = local_mean_and_envelope(signal, extreme_values)
mean = ma_enve$mean
p3 <- ggplot() +
geom_spline(
data = dummy_df,
aes(x = Time, y = Value),
size = 2,
colour = "#1D2B71",
alpha = 0.5
) +
geom_point(
aes(x = dummy_df$Time[extreme_values], y = dummy_df$Value[extreme_values]),
size = 5,
colour = "red",
alpha = 0.5
) +
geom_line(aes(x = dummy_df$Time, y = mean),
size = 1,
colour = "red") +
scale_color_hue() +
labs(title = "Fig 3. Sifting Process: (2.1)") +
theme_minimal() +
theme(legend.position = "none")
plot(p3)
## ----echo=TRUE,message=FALSE,warning=FALSE------------------------------------
ma = ma_enve$ma
p4 <- ggplot() +
geom_spline(
data = dummy_df,
aes(x = Time, y = Value),
size = 2,
colour = "#1D2B71",
alpha = 0.5
) +
geom_point(
aes(x = dummy_df$Time[extreme_values], y = dummy_df$Value[extreme_values]),
size = 5,
colour = "red",
alpha = 0.5
) +
geom_line(aes(x = dummy_df$Time, y = ma),
size = 1,
colour = "red") +
scale_color_hue() +
labs(title = "Fig 4. Sifting Process: (2.2) ") +
theme_minimal() +
theme(legend.position = "none")
plot(p4)
## ----echo=TRUE,message=FALSE,warning=FALSE------------------------------------
envelope = ma_enve$enve
Time=dummy_df$Time
p5 <- ggplot() +
geom_line(aes(x = Time, y = envelope),
size = 1,
colour = "red") +
scale_color_hue() +
labs(title = "Fig 5. Sifting Process: (2.3)") +
theme_minimal() +
theme(legend.position = "none")
plot(p5)
## ----echo=TRUE,message=FALSE,warning=FALSE------------------------------------
enve_sm = ma_enve$enve_sm
Time=dummy_df$Time
p6 <- ggplot() +
geom_line(aes(x = Time, y = envelope),
size = 0.5,
colour = "red",alpha=0.5) +
geom_line(aes(x = Time, y = enve_sm),
size = 1,
colour = "red") +
scale_color_hue() +
labs(title = "Fig 6. Sifting Process: (2.4) ") +
theme_minimal() +
theme(legend.position = "none")
plot(p6)
## -----------------------------------------------------------------------------
t=0:600
x1=(1+0.5*cos(pi*t/100))*(cos(pi*t/2+2*cos(pi*t/50)))
x2=4*sin(pi*t/2500)*sin(6*pi*t/50)
y=x1+x2
Time=t
combined_signal=y
p7 <- ggplot() +
ggplot2::geom_line(aes(x = Time, y = combined_signal),
size = 1,
colour = "midnightblue") +
ggplot2::ylab("Combined Signal x(t)") +
ggplot2::theme_bw() +
ggplot2::theme(
panel.border = ggplot2::element_rect(size = 0.1),
legend.position = c(0.8, 0.8),
panel.grid.major.x = ggplot2::element_blank()
)
p8 <- ggplot() +
ggplot2::geom_line(aes(x = Time, y = x1),
size = 1,
colour = "midnightblue") +
ggplot2::ylab("x1(t)") +
ggplot2::theme_bw() +
ggplot2::theme(
panel.border = ggplot2::element_rect(size = 0.1),
legend.position = c(0.8, 0.8),
panel.grid.major.x = ggplot2::element_blank()
)
p9 <- ggplot() +
ggplot2::geom_line(aes(x = Time, y = x2),
size = 1,
colour = "midnightblue") +
ggplot2::ylab("x2(t)") +
ggplot2::theme_bw() +
ggplot2::theme(
panel.border = ggplot2::element_rect(size = 0.1),
legend.position = c(0.8, 0.8),
panel.grid.major.x = ggplot2::element_blank()
)
print((p7/p8/p9)+
plot_annotation(title = "Fig 8. Simulated Signal"))
## -----------------------------------------------------------------------------
lmd_object=LMD::lmd(combined_signal,max_num_pf=2)
PF1=lmd_object[["pf"]][[1]]
PF2=lmd_object[["pf"]][[2]]
residual_signal=lmd_object[["residue"]]
## -----------------------------------------------------------------------------
plot_lmd(lmd_object)+
plot_annotation(title = "Fig 9. LMD Decompsition of Simulated Signal")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.