| estimate.lmm | R Documentation | 
Perform a first order delta method
## S3 method for class 'lmm'
estimate(
  x,
  f,
  df = !is.null(x$df),
  robust = FALSE,
  type.information = NULL,
  level = 0.95,
  method.numDeriv = NULL,
  average = FALSE,
  transform.sigma = NULL,
  transform.k = NULL,
  transform.rho = NULL,
  ...
)
| x | a  | 
| f | [function] function of the model coefficient computing the parameter(s) of interest. Can accept extra-arguments. | 
| df | [logical] Should degree of freedom, computed using Satterthwaite approximation, for the parameter of interest be output. | 
| robust | [logical] Should robust standard errors (aka sandwich estimator) be output instead of the model-based standard errors. | 
| type.information | [character] Should the expected information be used (i.e. minus the expected second derivative) or the observed inforamtion (i.e. minus the second derivative). | 
| level | [numeric,0-1] the confidence level of the confidence intervals. | 
| method.numDeriv | [character] method used to approximate the gradient: either  | 
| average | [logical] is the estimand the average output of argument  | 
| transform.sigma | [character] Transformation used on the variance coefficient for the reference level. One of  | 
| transform.k | [character] Transformation used on the variance coefficients relative to the other levels. One of  | 
| transform.rho | [character] Transformation used on the correlation coefficients. One of  | 
| ... | extra arguments passed to  | 
if(require(lava) && require(nlme)){
#### Random effect ####
set.seed(10)
dL <- sampleRem(1e2, n.times = 3, format = "long")
e.lmm1 <- lmm(Y ~ X1+X2+X3 + (1|id), repetition = ~visit|id, data = dL)
nlme::ranef(e.lmm1)
e.ranef <- estimate(e.lmm1, f  = function(p){nlme::ranef(e.lmm1, p = p)$estimate})
e.ranef
if(require(ggplot2)){
df.gg <- cbind(index = 1:NROW(e.ranef), e.ranef)
gg.ranef <- ggplot(df.gg, aes(x = index, y=estimate, ymin=lower, ymax = upper))
gg.ranef + geom_point() + geom_errorbar() + ylab("estimated random effect") + xlab("id")
}
#### ANCOVA via mixed model ####
set.seed(10)
d <- sampleRem(1e2, n.time = 2)
e.ANCOVA1 <- lm(Y2~Y1+X1, data = d)
if(require(reshape2)){
   dL2 <- melt(d, id.vars = c("id","Y1","X1"),  measure.vars = c("Y1","Y2"))
   e.lmm <- lmm(value ~ variable + variable:X1, data = dL2, repetition = ~variable|id)
   e.delta <- estimate(e.lmm, function(p){
       c(Y1 = p["rho(Y1,Y2)"]*p["k.Y2"],
         X1 = p["variableY2:X1"]-p["k.Y2"]*p["rho(Y1,Y2)"]*p["variableY1:X1"])
})
   ## same estimate and similar standard errors. 
   e.delta
   summary(e.ANCOVA1)$coef
   ## Degrees of freedom are a bit off though
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.