| est_lm_cov_manifest | R Documentation | 
Main function for estimating LM model with covariates in the measurement model based on a global logit parameterization.  
 
 The function is no longer maintained. Please look at lmest function.
est_lm_cov_manifest(S, X, yv = rep(1,nrow(S)), k, q = NULL, mod = c("LM", "FM"),
                    tol = 10^-8, maxit = 1000, start = 0, mu = NULL, al = NULL,
                    be = NULL, si = NULL, rho = NULL, la = NULL, PI = NULL,
                    output = FALSE, out_se = FALSE)| S | array of available configurations (n x TT) with categories starting from 0 | 
| X | array (n x TT x nc) of covariates with eventually includes lagged response (nc = number of covariates) | 
| yv | vector of frequencies of the available configurations | 
| k | number of latent states | 
| q | number of support points for the AR(1) process | 
| mod | model ("LM" = Latent Markov with stationary transition, "FM" = finite mixture) | 
| tol | tolerance for the convergence (optional) and tolerance of conditional probability if tol>1 then return | 
| maxit | maximum number of iterations of the algorithm | 
| start | type of starting values (0 = deterministic, 1 = random, 2 = initial values in input) | 
| mu | starting value for mu (optional) | 
| al | starting value for al (optional) | 
| be | starting value for be (optional) | 
| si | starting value for si when mod="FM" (optional) | 
| rho | starting value for rho when mod="FM" (optional) | 
| la | starting value for la (optional) | 
| PI | starting value for PI (optional) | 
| output | to return additional output (PRED0, PRED1) | 
| out_se | TRUE for computing information matrix and standard errors | 
| mu | vector of cutpoints | 
| al | support points for the latent states | 
| be | estimate of the vector of regression parameters | 
| si | sigma of the AR(1) process (mod = "FM") | 
| rho | parameter vector for AR(1) process (mod = "FM") | 
| la | vector of initial probabilities | 
| PI | transition matrix | 
| lk | maximum log-likelihood | 
| np | number of parameters | 
| aic | value of AIC index | 
| bic | value of BIC index | 
| PRED0 | prediction of latent state | 
| PRED1 | prediction of the overall latent effect | 
| sebe | standard errors for the regression parameters be | 
| selrho | standard errors for logit type transformation of rho | 
| J1 | information matrix | 
| call | command used to call the function | 
Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)
Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) Latent Markov Models for Longitudinal Data, Chapman and Hall/CRC press.
Bartolucci, F., Bacci, S. and Pennoni, F. (2014) Longitudinal analysis of the self-reported health status by mixture latent autoregressive models, Journal of the Royal Statistical Society - series C, 63, pp. 267-288
## Not run: 
# Example based on self-rated health status (SRHS) data
# load SRHS data
data(data_SRHS_long)
dataSRHS <- data_SRHS_long
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
 dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),
Y = dataSRHS$srhs)
X <- res$XX
S <- 5-res$YY
# *** fit stationary LM model
res0 <- vector("list", 10)
tol <- 10^-6;
for(k in 1:10){
  res0[[k]] <- est_lm_cov_manifest(S, X, k, 1, mod = "LM", tol)
   save.image("example_SRHS.RData")
}
# *** fit the mixture latent auto-regressive model
tol <- 0.005
res <- vector("list",4)
k <- 1
q <- 51
res[[k]] <- est_lm_cov_manifest(S, X, k, q, mod = "FM", tol, output = TRUE)
for(k in 2:4) res[[k]] <- est_lm_cov_manifest(S, X, k, q = 61, mod = "FM", tol, output = TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.