Nothing
## ----1,echo=FALSE-------------------------------------------------------------
knitr::opts_chunk$set(cache=FALSE,collapse=TRUE, comment="#>")
## ----2------------------------------------------------------------------------
library(Landmarking)
set.seed(1)
data(data_repeat_outcomes)
head(data_repeat_outcomes)
## ----3------------------------------------------------------------------------
length(unique(data_repeat_outcomes$id))
mean(table(data_repeat_outcomes$id))
## ----4------------------------------------------------------------------------
table(unique(data_repeat_outcomes[,c("id","event_status")])[,"event_status"])
## ----9------------------------------------------------------------------------
data_repeat_outcomes <-
return_ids_with_LOCF(
data_long = data_repeat_outcomes,
individual_id = "id",
covariates = c("ethnicity", "smoking", "diabetes", "sbp_stnd", "tchdl_stnd"),
covariates_time = c(rep("response_time_sbp_stnd", 4), "response_time_tchdl_stnd"),
x_L = c(60, 61)
)
## ----11-----------------------------------------------------------------------
data_model_landmark_LOCF <-
fit_LOCF_landmark(
data_long = data_repeat_outcomes,
x_L = c(60, 61),
x_hor = c(65, 66),
covariates = c("ethnicity", "smoking", "diabetes", "sbp_stnd", "tchdl_stnd"),
covariates_time = c(rep("response_time_sbp_stnd", 4), "response_time_tchdl_stnd"),
k = 10,
individual_id = "id",
event_time = "event_time",
event_status = "event_status",
survival_submodel = "cause_specific"
)
## ----12-----------------------------------------------------------------------
plot(
density(100 * data_model_landmark_LOCF[["60"]]$data$event_prediction),
xlab = "Predicted risk of CVD event (%)",
main = "Landmark age 60"
)
## ----13-----------------------------------------------------------------------
data_model_landmark_LOCF
## ----14-----------------------------------------------------------------------
data_model_landmark_LOCF[["60"]]$prediction_error
data_model_landmark_LOCF[["61"]]$prediction_error
## ----20-----------------------------------------------------------------------
plot(x = data_model_landmark_LOCF, x_L = 60, n = 5)
## ----15-----------------------------------------------------------------------
cross_validation_list <- lapply(data_model_landmark_LOCF, "[[", i = 1)
## ----16-----------------------------------------------------------------------
data_model_landmark_LME <-
fit_LME_landmark(
data_long = data_repeat_outcomes[["60"]],
x_L = c(60),
x_hor = c(65),
cross_validation_df =
cross_validation_list,
fixed_effects = c("ethnicity", "smoking", "diabetes"),
fixed_effects_time =
"response_time_sbp_stnd",
random_effects = c("sbp_stnd", "tchdl_stnd"),
random_effects_time = c("response_time_sbp_stnd", "response_time_tchdl_stnd"),
individual_id = "id",
standardise_time = TRUE,
lme_control = nlme::lmeControl(maxIter =
100, msMaxIter = 100),
event_time = "event_time",
event_status = "event_status",
survival_submodel = "cause_specific"
)
## ----17-----------------------------------------------------------------------
data_model_landmark_LOCF[["60"]]$prediction_error
data_model_landmark_LME[["60"]]$prediction_error
## ----18-----------------------------------------------------------------------
newdata <-
data.frame(
id = c(3001, 3001, 3001),
response_time_sbp_stnd = c(57, 58, 59),
smoking = c(0, 0, 0),
diabetes = c(0, 0, 0),
ethnicity = c("Indian", "Indian", "Indian"),
sbp_stnd = c(0.45, 0.87, 0.85),
tchdl_stnd = c(-0.7, 0.24, 0.3),
response_time_tchdl_stnd = c(57, 58, 59)
)
predict(
object = data_model_landmark_LME,
x_L = 60,
x_hor = 62,
newdata = newdata,
cv_fold = 1
)
predict(
object = data_model_landmark_LME,
x_L = 60,
x_hor = 64,
newdata = newdata,
cv_fold = 1
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.