Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(fig.width=8,
fig.height=4,
collapse = TRUE,
comment = "#>"
)
## ----setup, warning=FALSE-----------------------------------------------------
library(MALDIcellassay)
library(MALDIquant)
## ----loadData-----------------------------------------------------------------
data("Blank2022spec")
## ----qualityCheck-------------------------------------------------------------
MALDIquant::plot(Blank2022spec[[1]], main = "0uM, replicate 1")
## ----baseline-----------------------------------------------------------------
conc <- as.numeric(names(Blank2022spec))
spec_prc <- MALDIquant::removeBaseline(Blank2022spec)
avg <- MALDIquant::averageMassSpectra(spec_prc, labels = conc)
MALDIquant::plot(avg[[1]], main = "Overview of mean spectra", xlim = c(755, 765))
for(i in 2:length(avg)) {
MALDIquant::lines(avg[[i]], col = i)
}
legend("topright", legend = paste0(names(avg), "uM"), col = 1:8, lty=1)
## ----mzShift------------------------------------------------------------------
peaks <- MALDIquant::detectPeaks(Blank2022spec, method = "SuperSmoother", SNR = 5)
names(peaks) <- names(Blank2022spec)
mz_shift <- getMzShift(peaks = peaks, targetMz = 760.585, tol = 500)
summary(mz_shift$mzshift)
## ----recal--------------------------------------------------------------------
spec_align <- shiftMassAxis(Blank2022spec, mz_shift$mzshift)
## ----norm---------------------------------------------------------------------
peaks_align <- MALDIquant::detectPeaks(spec_align, method = "SuperSmoother", SNR = 3)
norm <- getNormFactors(peaksdf = peaks2df(peaks_align), targetMz = 760.585, tol = 100)
summary(norm$norm_factor)
spec_rdy <- normalizeByFactor(spec_align, norm$norm_factor)
## ----finalCheck---------------------------------------------------------------
avg_rdy <- MALDIquant::averageMassSpectra(spec_rdy, labels = conc)
MALDIquant::plot(avg_rdy[[1]], main = "Overview of mean spectra", xlim = c(755, 765))
for(i in 2:length(avg_rdy)) {
MALDIquant::lines(avg_rdy[[i]], col = i)
}
legend("topright", legend = paste0(names(avg), "uM"), col = 1:8, lty=1)
## ----intmat-------------------------------------------------------------------
peaks_rdy <- MALDIquant::detectPeaks(avg_rdy, method = "SuperSmoother", SNR = 3)
peaks_rdy <- MALDIquant::binPeaks(peaks_rdy)
intmat <- MALDIquant::intensityMatrix(peaks_rdy, avg_rdy)
dim(intmat)
## ----highVar------------------------------------------------------------------
vars <- apply(intmat, 2, var)
idx <- which(vars > mean(vars))
highVarIntmat <- intmat[,idx]
dim(highVarIntmat)
## ----fit----------------------------------------------------------------------
concLog <- log10(unique(conc))
if(any(concLog == -Inf)) {
concLog[which(concLog == -Inf)] <- (min(concLog[which(!concLog == -Inf)])-1)
}
resp <- nplr::convertToProp(y = intmat[,10])
model <- nplr::nplr(x = concLog, y = resp, useLog = FALSE, npars = 4)
title <- paste0("m/z =", round(as.numeric(colnames(intmat)[12]), 2))
plot(model, main = title)
## ----fitCruve, eval = FALSE---------------------------------------------------
# fitCurve(spec = Blank2022spec,
# SinglePointRecal = TRUE,
# normMz = 760.585,
# alignTol = 0.1,
# normTol = 0.1)
## ----Rsession-----------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.