| MARSShatyt | R Documentation | 
Computes the expected value of random variables involving \mathbf{Y}.  Users can use tsSmooth() or print( MLEobj, what="Ey") to access this output.  See print.marssMLE.
MARSShatyt(MLEobj, only.kem = TRUE)
MLEobj | 
  A   | 
only.kem | 
  If TRUE, return only   | 
For state space models, MARSShatyt() computes the expectations involving \mathbf{Y}.  If \mathbf{Y} is completely observed, this entails simply replacing \mathbf{Y} with the observed \mathbf{y}.  When \mathbf{Y} is only partially observed, the expectation involves the conditional expectation of a multivariate normal. 
A list with the following components (n is the number of state processes). Following the notation in Holmes (2012), \mathbf{y}(1) is the observed data (for t=1:T) while \mathbf{y}(2) is the unobserved data.  \mathbf{y}(1,1:t-1) is the observed data from time 1 to t-1.
ytT | 
 E[Y(t) | Y(1,1:T)=y(1,1:T)] (n x T matrix).  | 
ytt1 | 
 E[Y(t) | Y(1,1:t-1)=y(1,1:t-1)] (n x T matrix).  | 
ytt | 
 E[Y(t) | Y(1,1:t)=y(1,1:t)] (n x T matrix).  | 
OtT | 
 E[Y(t) t(Y(t)) | Y(1,1:T)=y(1,1:T)] (n x n x T array).  | 
var.ytT | 
 var[Y(t) | Y(1,1:T)=y(1,1:T)] (n x n x T array).  | 
var.EytT | 
 var_X[E_Y[Y(t) | Y(1,1:T)=y(1,1:T), X(t)=x(t)]] (n x n x T array).  | 
Ott1 | 
 E[Y(t) t(Y(t)) | Y(1,1:t-1)=y(1,1:t-1)] (n x n x T array).  | 
var.ytt1 | 
 var[Y(t) | Y(1,1:t-1)=y(1,1:t-1)] (n x n x T array).  | 
var.Eytt1 | 
 var_X[E_Y[Y(t) | Y(1,1:t-1)=y(1,1:t-1), X(t)=x(t)]] (n x n x T array).  | 
Ott | 
 E[Y(t) t(Y(t)) | Y(1,1:t)=y(1,1:t)] (n x n x T array).  | 
yxtT | 
 E[Y(t) t(X(t)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).  | 
yxtt1T | 
 E[Y(t) t(X(t-1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).  | 
yxttpT | 
 E[Y(t) t(X(t+1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).  | 
errors | 
 Any error messages due to ill-conditioned matrices.  | 
ok | 
 (TRUE/FALSE) Whether errors were generated.  | 
Eli Holmes, NOAA, Seattle, USA.
Holmes, E. E. (2012) Derivation of the EM algorithm for constrained and unconstrained multivariate autoregressive state-space (MARSS) models. Technical report. arXiv:1302.3919 [stat.ME] Type RShowDoc("EMDerivation",package="MARSS") to open a copy. See the section on 'Computing the expectations in the update equations' and the subsections on expectations involving Y. 
MARSS(), marssMODEL, MARSSkem()
dat <- t(harborSeal)
dat <- dat[2:3, ]
fit <- MARSS(dat)
EyList <- MARSShatyt(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.