Description Usage Arguments Value References See Also Examples
This function provides several methods to estimate the central space or central mean space of y on x.
It returns the matrix of central space or central mean space for different dimensions and contains
other information used for dimension selection by mave.dim
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
formula |
the model used in regression |
data |
the data |
method |
This parameter specify which method will be used in dimension reduction. It provides five methods, including "csMAVE","csOPG","meanOPG","meanMAVE","KSIR" by default, method = 'csOPG'
|
max.dim |
the maximum dimension of dimension reduction space. The default is 10. In practice, max.dim will be equal to min(max.dim,ncol(x),screen). |
screen |
specify the number of variables retained after screening method. The default is n/log(n). When this number is smaller than max.dim, then max.dim will change to the value of screen |
subset |
an optional vector specifying a subset of observations to be used in the fitting process. |
na.action |
a function which indicates what should happen when the data contain NAs. The default is na.action, which wil stop calculations. If na.action is set to be na.omit, the incomplete cases will be removed. |
x |
The n by p design matrix. |
y |
The n by q respond matrix. |
dr is a list which contains:
dir: dir[[d]] is the central space with d-dimension d = 1, 2, ..., p reduced direction of different dimensions
y: the value of response
idx: the index of variables which survives after screening
max.dim: the largest dimensions of CS or CMS which have been calculated in mave function
ky: parameter used for DIM for selection
x: the original training data
Li K C. Sliced inverse regression for dimension reduction[J]. Journal of the American Statistical Association, 1991, 86(414): 316-327.
Xia Y, Tong H, Li W K, et al. An adaptive estimation of dimension reduction space[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2002, 64(3): 363-410.
Xia Y. A constructive approach to the estimation of dimension reduction directions[J]. The Annals of Statistics, 2007: 2654-2690.
Wang H, Xia Y. Sliced regression for dimension reduction[J]. Journal of the American Statistical Association, 2008, 103(482): 811-821.
mave.dim
for dimension selection, predict.mave
for prediction
using the dimension reduction space, coef.mave
for accessing the basis vectors of
dimension reduction space of given dimension, plot.mave
for plot method for mave class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | x <- matrix(rnorm(400*5),400,5)
b1 <- matrix(c(1,1,0,0,0),5,1)
b2 <- matrix(c(0,0,1,1,0),5,1)
eps <- matrix(rnorm(400),400,1)
y <- x%*%b1 + (x%*%b2)*eps
#finding central space based on OPG method
#dr.csopg <- mave.compute(x,y, method = 'csopg')
#or
dr.csopg <- mave(y ~ x, method = 'csopg')
#dr.meanopg <- mave.compute(x,y, method = 'meanopg')
#or
dr.meanopg <- mave(y ~ x, method = 'meanopg')
#find central mean space based on ksir method
dr.ksir <- mave(y~x,method='ksir')
#or
#dr.ksir <- mave.compute(x,y,method='ksir')
#See more examples about screening and mutiple responses in the vignette
#Using screening for high dimensional data
#x <- matrix(rnorm(100*50),100,50)
#y1 = as.matrix(x[,1])+rnorm(100)*.2
#y2 = as.matrix(x[,2]+x[,3])*as.matrix(x[,1]+x[,5])+rnorm(100)*.2
#y = cbind(y1,y2)
#dr.sc = mave(y~x,method='CSOPG',max.dim=5,screen=20)
#dr.sc.dim = mave.dim(dr.sc)
#print the directions of central space with the selected variables
#dr.sc.dim$dir[[3]][dr.sc$idx,]
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.