omni | R Documentation |
Computes fixed and random effects omnibus effect size for correlations.
omni(g, var, data, type="weighted", method = "random")
g |
Hedges g (unbiased estimate of d) effect size. |
var |
Vaiance of g. |
type |
|
method |
Default is |
data |
|
Depricated function. Use mareg(es~1, var, data) instead.
Fixed and random effects:
k |
Number of studies in the meta-analysis. |
estimate |
Unstandardized regression coefficient estimate. |
se |
Standard error of the estimate coefficient. |
z |
z-value. |
ci.l |
Lower 95% confidence interval. |
ci.u |
Upper 95% confidence interval. |
p |
Significance level. |
Q |
Q-statistic (measure of homogeneity). |
df.Q |
Degrees of freedom for Q-statistic. |
Qp |
Q-statistic p-value (assesses overall homogeneity between studies). |
I2 |
Proportion of total variation in effect size that is due to heterogeneity rather than chance (see Shadish & Haddock, 2009; pp. 263). |
AC Del Re & William T. Hoyt
Maintainer: AC Del Re acdelre@gmail.com
Shadish & Haddock (2009). Analyzing effect sizes: Fixed-effects models. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta analysis (pp. 257-278). New York: Russell Sage Foundation.
id<-c(1:20) n.1<-c(10,20,13,22,28,12,12,36,19,12,36,75,33,121,37,14,40,16,14,20) n.2 <- c(11,22,10,20,25,12,12,36,19,11,34,75,33,120,37,14,40,16,10,21) g <- c(.68,.56,.23,.64,.49,-.04,1.49,1.33,.58,1.18,-.11,1.27,.26,.40,.49, .51,.40,.34,.42,1.16) var.g <- c(.08,.06,.03,.04,.09,.04,.009,.033,.0058,.018,.011,.027,.026,.0040, .049,.0051,.040,.034,.0042,.016) mod<-factor(c(rep(c(1,1,2,3),5))) df<-data.frame(id, n.1,n.2, g, var.g,mod) # Example omni(g = g, var = var.g, data = df, type="weighted", method = "random")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.