Nothing
#' Generate the matrix A, whose columns are the vertices of the marginal polytope.
#'
#' @param bS A binary matrix specifying the set of observation patterns. Each row encodes a single pattern.
#' @param M A vector of positive integers giving the alphabet sizes of the discrete variables.
#'
#' @return The matrix A.
#' @export
#'
#' @examples
#' bS=matrix(c(1,1,0, 1,0,1, 0,1,1),byrow=TRUE,ncol=3)
#' M=c(2,2,2)
#' Amatrix(bS,M)
Amatrix=function(bS,M){
X=prod(M) # Dimension of cX
bSwDims=t(t(bS)*M); bSwDims[bSwDims==0]=1
v=sum(apply(bSwDims,1,prod)) # Dimension of cX_bS
A=matrix(rep(0,X*v),ncol=X)
cardS=nrow(bS)
for(i in 1:prod(M)){
x=as.vector(arrayInd(i,M))
for(S in 1:cardS){
xS=x[bS[S,]==1]
A[row_index(bS,M,S,xS),col_index(M,x)]=1
}
}
return(A)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.