Description Usage Arguments Details Author(s) References See Also Examples
plot quantile-quantile plot for the return value of 'meta.TradPerm' and 'meta.MCPerm' for certain study or meta analysis.
1 2 |
Trad_data |
the return value of function 'meta.TradPerm', e.g. 'perm_case_11' of certain stuy, 'perm_Qp', 'perm_p' etc. |
MC_data |
the return value of function 'meta.MCPerm', e.g. 'perm_case_11' of certain stuy, 'perm_Qp', 'perm_p' etc. |
scatter_col |
the color for scatter points of quantile-quantile plot, default value is 'black'. |
line_col |
the color of line which passes through the sample distribution probs quantiles, the first and third quartiles. Default value is 'black'. |
title |
the main title(on top), default value is 'QQ plot'. |
xlab,ylab |
X axis label, default is "Quantile for TradPerm data)". Y axis label, default is "Quantile for MCPerm data". |
Plotting quantile-quantile plot for the return value(e.g. 'perm_case_11' of certain stuy, 'perm_Qp', 'perm_p' etc) of 'meta.TradPerm' and 'meta.MCPerm' is to compare the simulative data distribution got by TradPerm and MCPerm method whether are same.
MCPerm details see chisq.MCPerm.
TradPerm details see chisq.TradPerm.
Lanying Zhang and Yongshuai Jiang <jiangyongshuai@gmail.com>
William S Noble(Nat Biotechnol.2009): How does multiple testing correction work?
Edgington. E.S.(1995): Randomization tests, 3rd ed.
meta.MCPerm,
meta.TradPerm,
chisq.MCPerm,
chisq.TradPerm,
VS.Hist,
VS.CDC,
VS.KS,
VS.Allele.QQ,
VS.Genotype.QQ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ## import data
# data(MetaGenotypeData)
## delete first line which contains the names of each column
# temp=MetaGenotypeData[-1,];
# rowNum=nrow(temp)
# gen=matrix(0,nrow=rowNum,ncol=1);
# aff=matrix(0,nrow=rowNum,ncol=1);
# for(j in 1:rowNum){
# gen[j,]=paste(temp[j,14],temp[j,15],sep=" ");
# case_num=length(unlist(strsplit(temp[j,14],split=" ")));
# control_num=length(unlist(strsplit(temp[j,15],split=" ")));
# case_aff=paste(rep(2,case_num),collapse=" ");
# control_aff=paste(rep(1,control_num),collapse=" ");
# aff[j,]=paste(case_aff,control_aff,sep=" ");
# }
# result1=meta.TradPerm(gen,aff,split=" ",sep="/",naString="-",
# model="allele",method="MH",repeatNum=1000)
# result1
## plot study 12
# Trad_case_1=2*result1$perm_case_11[12,]+result1$perm_case_12[12,]
## import data
# data(MetaGenotypeCount)
## delete the first line which is the names for columns.
# temp=MetaGenotypeCount[-1,,drop=FALSE]
# result=meta.MCPerm(case_11=as.numeric(temp[,14]),case_12=as.numeric(temp[,16]),
# case_22=as.numeric(temp[,18]),control_11=as.numeric(temp[,15]),
# control_12=as.numeric(temp[,17]),control_22=as.numeric(temp[,19]),
# model="allele",method="MH",repeatNum=100000)
# result2
## plot study 12
# MC_case_1=2*result2$perm_case_11[12,]+result2$perm_case_12[12,]
# VS.QQ(Trad_case_1,MC_case_1,title="cumulative distribution cure for case_1")
# VS.QQ(result1$perm_Qp,result2$perm_Qp,title="cumulative distribution cure for Qp")
# VS.QQ(result1$perm_p,result2$perm_p,title="cumulative distribution cure for p")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.