Nothing
# create a new environment to store the parameter estimation from the continuous case study.
phat.env=new.env(parent = emptyenv())
#' Discretize 2D data from case studies
#'
#' This function provides the info necessary to run the case studies for discrete data.
#'
#' @param which name or number of desired case study.
#' @param WithEstimation = FALSE, case study with or without parameter estimation.
#' @param nbins =c(5, 5) number of bins to use in x and y direction
#' @param nsample = 250, required sample size
#' @return a list with needed stuff
#' @export
case.studies.disc=function(which, WithEstimation=FALSE,
nbins=c(5, 5), nsample=250) {
if(WithEstimation)
list.of.cases=MDgof::case.studies.est(ReturnCaseNames=TRUE)
else
list.of.cases=MDgof::case.studies(ReturnCaseNames=TRUE)
if(is.numeric(which[1])) which=list.of.cases[which]
if(!WithEstimation) {
tmp=MDgof::case.studies(which, nsample=nsample)
rnull1=function()
MDgof::discretize(tmp$rnull(), tmp$Range, nbins=nbins)
ralt=function(p)
MDgof::discretize(tmp$ralt(p), tmp$Range, nbins=nbins)
return(list(pnull=tmp$pnull, rnull=rnull1, ralt=ralt,
param_alt=tmp$param_alt))
}
else {
tmp1=MDgof::case.studies.est(which, nsample=nsample)
rnull2=function(p) {
x=tmp1$rnull(p)
phat.env$phat=tmp1$phat(x)
MDgof::discretize(x, tmp1$Range, nbins=nbins)
}
ralt=function(p) {
x=tmp1$ralt(p)
phat.env$phat=tmp1$phat(x)
MDgof::discretize(x, tmp1$Range, nbins=nbins)
}
phat=function(x) return(phat.env$phat)
return(list(pnull=tmp1$pnull, rnull=rnull2, ralt=ralt,
phat=phat, param_alt=tmp1$param_alt))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.