Nothing
MGGM.path <- function(S_bar, # p by p*L matrix: [S_1, ... ,S_L] with S_l being the l-th sample cov matrix
nn, # L dimensional vector storing the sample sizes
Lambda1.vec, Lambda2.vec, # lambda grids for lambda1 and lambda2
graph, # matrix specifying pairs of precision matrices to be penalized to be similar; see example.R for constructions
tau = .01, MAX_iter=200, eps_mat = 1e-4){
p = dim(S_bar)[1]
L = dim(S_bar)[2] / p
grid.lambda1 = length(Lambda1.vec)
grid.lambda2 = length(Lambda2.vec)
# four matrices for input #
covmat_inverse_path = matrix(rep(diag(p),L),p,p*L*grid.lambda1*grid.lambda2)
covmat_inverse_con_path = covmat_inverse_path
covmat_path = covmat_inverse_path
covmat_con_path = covmat_inverse_path
NumOfEdge = dim(graph)[2]
out <- .C("matrix_grouping_path", S_bar = as.double(S_bar),
covmat_inverse_path=as.double(covmat_inverse_path),
covmat_path = as.double(covmat_path),
covmat_inverse_con_path=as.double(covmat_inverse_con_path),
covmat_con_path = as.double(covmat_con_path),
Lambda1=as.double(Lambda1.vec),Lambda2 = as.double(Lambda2.vec),
Tau=as.double(tau), grid_lambda1 = as.integer(grid.lambda1),
grid_lambda2 = as.integer(grid.lambda2),
Graph=as.integer(graph),sample_size=as.double(nn),
pp=as.integer(p),LL=as.integer(L),
NumOfEdges=as.integer(NumOfEdge),MAX_DC_ITER0=as.double(MAX_iter),
eps_mat=as.double(eps_mat),PACKAGE = "MGGM")
sol_path = list()
sol_path$sol_nonconvex = array(out$covmat_inverse_path, dim=c(p,p*L,grid.lambda2,grid.lambda1))
sol_path$sol_convex = array(out$covmat_inverse_con_path, dim=c(p,p*L,grid.lambda2,grid.lambda1))
return (sol_path)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.