corDist | R Documentation |
The function computes and returns the correlation and absolute correlation distance matrix computed by using the specified distance measure to compute the distances between the rows of a data matrix.
corDist(x, method = "pearson", diag = FALSE, upper = FALSE, abs = FALSE, use = "pairwise.complete.obs", ...)
x |
a numeric matrix or data frame |
method |
the correlation distance measure to be used. This must be one of
|
diag |
logical value indicating whether the diagonal of the distance matrix should be printed by 'print.dist'. |
upper |
logical value indicating whether the upper triangle of the distance matrix should be printed by 'print.dist'. |
abs |
logical, compute absolute correlation distances |
use |
character, correponds to argument |
... |
further arguments to functions |
The function computes the Pearson, Spearman, Kendall or Cosine sample correlation
and absolute correlation; confer Section 12.2.2 of Gentleman et al (2005). For more
details about the arguments we refer to functions dist
and
cor
.
Moreover, the function computes the minimum covariance determinant or the
orthogonalized Gnanadesikan-Kettenring estimator. For more details we refer to
functions covMcd
and covOGK
,
respectively.
corDist
returns an object of class "dist"
; cf. dist
.
A first version of this function appeared in package SLmisc.
Matthias Kohl Matthias.Kohl@stamats.de
Gentleman R. Ding B., Dudoit S. and Ibrahim J. (2005). Distance Measures in DNA Microarray Data Analysis. In: Gentleman R., Carey V.J., Huber W., Irizarry R.A. and Dudoit S. (editors) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer.
P. J. Rousseeuw and A. M. Leroy (1987). Robust Regression and Outlier Detection. Wiley.
P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212-223.
Pison, G., Van Aelst, S., and Willems, G. (2002), Small Sample Corrections for LTS and MCD, Metrika, 55, 111-123.
Maronna, R.A. and Zamar, R.H. (2002). Robust estimates of location and dispersion of high-dimensional datasets; Technometrics 44(4), 307-317.
Gnanadesikan, R. and John R. Kettenring (1972). Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics 28, 81-124.
## only a dummy example M <- matrix(rnorm(1000), ncol = 20) D <- corDist(M)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.