mod.t.test | R Documentation |
Performs moderated t-tests based on Bioconductor package limma.
mod.t.test(x, group = NULL, paired = FALSE, adjust.method = "BH", sort.by = "none")
x |
a (non-empty) numeric matrix of data values. |
group |
an optional factor representing the groups. |
paired |
a logical indicating whether you want a paired test. |
adjust.method |
see |
sort.by |
see |
, where "logFC"
corresponds to difference in means.
The function uses Bioconductor package limma to compute moderated t-tests.
For more details we refer to ebayes
.
A data.frame with the results.
B. Phipson, S. Lee, I.J. Majewski, W.S. Alexander, G.H. Smyth (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10(2), 946-963.
t.test
## One-sample test X <- matrix(rnorm(10*20, mean = 1), nrow = 10, ncol = 20) mod.t.test(X) ## corresponds to library(limma) design <- matrix(1, nrow = ncol(X), ncol = 1) colnames(design) <- "A" fit1 <- lmFit(X, design) fit2 <- eBayes(fit1) topTable(fit2, coef = 1, number = Inf, confint = TRUE, sort.by = "none")[,-4] ## Two-sample test set.seed(123) X <- rbind(matrix(rnorm(5*20), nrow = 5, ncol = 20), matrix(rnorm(5*20, mean = 1), nrow = 5, ncol = 20)) g2 <- factor(c(rep("group 1", 10), rep("group 2", 10))) mod.t.test(X, group = g2) ## corresponds to design <- model.matrix(~ 0 + g2) colnames(design) <- c("group1", "group2") fit1 <- lmFit(X, design) cont.matrix <- makeContrasts(group1vsgroup2="group1-group2", levels=design) fit2 <- contrasts.fit(fit1, cont.matrix) fit3 <- eBayes(fit2) topTable(fit3, coef = 1, number = Inf, confint = TRUE, sort.by = "none")[,-4] ## Paired two-sample test mod.t.test(X, group = g2, paired = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.