View source: R/plotting_utils.R
plot_pfi | R Documentation |
The plot_pfi() function generates bar plots to visualize feature importance through permutation, providing clear representation of each predictor variable's relative contribution to model performance. The function includes an option to display accompanying numerical results tables for comprehensive interpretation.
plot_pfi(analysis_object, show_table = FALSE)
analysis_object |
Fitted analysis_object with 'sensitivity_analysis(methods = "PFI")'. |
show_table |
Boolean. Whether to print PFI results table. |
analysis_object
# Note: For obtaining the PFI plot results the user needs to complete till
# sensitivity_analysis( ) function of the MLwrap pipeline using the PFI method.
wrap_object <- preprocessing(df = sim_data,
formula = psych_well ~ depression + emot_intel + resilience,
task = "regression")
wrap_object <- build_model(wrap_object, "Random Forest")
wrap_object <- fine_tuning(wrap_object, "Bayesian Optimization")
wrap_object <- sensitivity_analysis(wrap_object, methods = "PFI")
# And then, you can obtain the PFI plot.
plot_pfi(wrap_object)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.