table_pfi_results | R Documentation |
The table_pfi_results() function extracts Permutation Feature Importance results, a model-agnostic technique that evaluates variable importance through performance degradation when randomly permuting each feature's values.
table_pfi_results(analysis_object, show_table = FALSE)
analysis_object |
Fitted analysis_object with 'sensitivity_analysis(methods = "PFI")'. |
show_table |
Boolean. Whether to show the table. |
Tibble or list of tibbles (multiclass classification) with PFI results.
# Note: For obtaining the table with PFI method results the user needs to
# complete till sensitivity_analysis() function of the
# MLwrap pipeline using PFI method.
wrap_object <- preprocessing(df = sim_data,
formula = psych_well ~ depression + emot_intel + resilience,
task = "regression")
wrap_object <- build_model(wrap_object, "Random Forest")
wrap_object <- fine_tuning(wrap_object, "Bayesian Optimization")
wrap_object <- sensitivity_analysis(wrap_object, methods = "PFI")
# And then, you can obtain the PFI results table.
table_pfi <- table_pfi_results(wrap_object)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.