View source: R/plotting_utils.R
plot_roc_curve | R Documentation |
The plot_roc_curve() function produces ROC (Receiver Operating Characteristic) curves, providing fundamental visual metrics for evaluating binary and multiclass classifier performance. The ROC curve illustrates the trade-off between true positive rate and false positive rate across different classification thresholds.
plot_roc_curve(analysis_object)
analysis_object |
Fitted analysis_object with 'fine_tuning()'. |
analysis_object
# Note: For obtaining roc curve plot the user needs to
# complete till fine_tuning( ) function of the MLwrap pipeline and
# only with categorical outcome.
wrap_object <- preprocessing(df = sim_data,
formula = psych_well_bin ~ depression + emot_intel + resilience,
task = "classification")
wrap_object <- build_model(wrap_object, "Random Forest")
wrap_object <- fine_tuning(wrap_object, "Bayesian Optimization")
# And then, you can obtain the roc curve plot.
plot_roc_curve(wrap_object)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.