# eta.full.SS: Eta for ANOVA from F and Sum of Squares In MOTE: Effect Size and Confidence Interval Calculator

## Description

This function displays eta squared from ANOVA analyses and its non-central confidence interval based on the F distribution. This formula works for one way and multi way designs with careful focus on the sum of squares total.

## Usage

 `1` ```eta.full.SS(dfm, dfe, ssm, sst, Fvalue, a = 0.05) ```

## Arguments

 `dfm` degrees of freedom for the model/IV/between `dfe` degrees of freedom for the error/residual/within `ssm` sum of squares for the model/IV/between `sst` sum of squares total `Fvalue` F statistic `a` significance level

## Details

Eta squared is calculated by dividing the sum of squares for the model by the sum of squares total.

eta^2 = ssm / sst

## Value

Provides eta with associated confidence intervals and relevant statistics.

 `eta` effect size `etalow` lower level confidence interval of eta `etahigh` upper level confidence interval of eta `dfm` degrees of freedom for the model/IV/between `dfe` degrees of freedom for the error/resisual/within `F` F-statistic `p` p-value `estimate` the eta squared statistic and confidence interval in APA style for markdown printing `statistic` the F-statistic in APA style for markdown printing

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15``` ```#The following example is derived from the "bn1_data" dataset, included #in the MOTE library. #A health psychologist recorded the number of close inter-personal #attachments of 45-year-olds who were in excellent, fair, or poor #health. People in the Excellent Health group had 4, 3, 2, and 3 #close attachments; people in the Fair Health group had 3, 5, #and 8 close attachments; and people in the Poor Health group #had 3, 1, 0, and 2 close attachments. anova_model = lm(formula = friends ~ group, data = bn1_data) summary.aov(anova_model) eta.full.SS(dfm = 2, dfe = 8, ssm = 25.24, sst = (25.24+19.67), Fvalue = 5.134, a = .05) ```

MOTE documentation built on May 2, 2019, 5:51 a.m.