Description Usage Arguments Details Value Author(s) References Examples
Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the Marshall-Olkin Kumaraswamy G
distribution. General form for the probability density function (pdf) of the Marshall-Olkin Kumaraswamy G
distribution due to Roshini and Thobias (2017) is given by
f(x,{Θ}) = \frac{{abd g(x-μ,θ ){{≤ft( {G(x-μ,θ )} \right)}^{a - 1}}{{≤ft[ {1 - {{≤ft( {G(x-μ,θ )} \right)}^a}} \right]}^{b - 1}}}}{{{{≤ft[ {1 - ≤ft( {1 - d} \right){{≤ft[ {1 - {{≤ft( {G(x-μ,θ )} \right)}^a}} \right]}^b}} \right]}^2}}},
where θ is the baseline family parameter vector. Also, a>0, b>0, d>0, and μ are the extra parameters induced to the baseline cumulative distribution function (cdf) G
whose pdf is g
. The general form for the cumulative distribution function (cdf) of the Marshall-Olkin Kumaraswamy G
distribution is given by
F(x,{Θ}) = 1 - \frac{{d{{≤ft[ {1 - {{≤ft( {G(x-μ,θ )} \right)}^a}} \right]}^b}}}{{1 - ≤ft( {1 - d} \right){{≤ft[ {1 - {{≤ft( {G(x-μ,θ )} \right)}^a}} \right]}^b}}}.
Here, the baseline G
refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is Θ=(a,b,d,θ,μ) where θ is the baseline G
family's parameter space. If θ consists of the shape and scale parameters, the last component of θ is the scale parameter (here, a, b, and d are the first, second, and the third shape parameters). Always, the location parameter μ is placed in the last component of Θ.
1 2 3 4 5 6 | dmokumg(mydata, g, param, location = TRUE, log=FALSE)
pmokumg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qmokumg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rmokumg(n, g, param, location = TRUE)
qqmokumg(mydata, g, location = TRUE, method)
mpsmokumg(mydata, g, location = TRUE, method, sig.level)
|
g |
The name of family's pdf including: " |
p |
a vector of value(s) between 0 and 1 at which the quantile needs to be computed. |
n |
number of realizations to be generated. |
mydata |
Vector of observations. |
param |
parameter vector Θ=(a,b,d,θ,μ) |
location |
If |
log |
If |
log.p |
If |
lower.tail |
If |
method |
The used method for maximizing the sum of log-spacing function. It will be " |
sig.level |
Significance level for the Chi-square goodness-of-fit test. |
It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are m(log
(m)+0.57722)-0.5-1/(12m) and m(π^2/6-1)-0.5-1/(6m), respectively, with m=n+1
, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n
independent realizations at the given significance level, indicated in above as sig.level
.
A vector of the same length as mydata
, giving the pdf values computed at mydata
.
A vector of the same length as mydata
, giving the cdf values computed at mydata
.
A vector of the same length as p
, giving the quantile values computed at p
.
A vector of the same length as n
, giving the random numbers realizations.
A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (AIC
), Consistent Akaike Information Criterion (CAIC
), Bayesian Information Criterion (BIC
), Hannan-Quinn information criterion (HQIC
), Cramer-von Misses statistic (CM
), Anderson Darling statistic (AD
), log-likelihood statistic (log
), and Moran's statistic (M
). The Kolmogorov-Smirnov (KS
) test statistic and corresponding p-value
. The Chi-square test statistic, critical upper tail Chi-square distribution, related p-value
, and the convergence status.
Mahdi Teimouri
Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, Biometrika, 76 (2), 385-392.
Roshini, G. and Thobias, S. (2017). Marshall-Olkin Kumaraswamy Distribution, International Mathematical Forum, 12 (2), 47-69.
1 2 3 4 5 6 7 | mydata<-rweibull(100,shape=2,scale=2)+3
dmokumg(mydata, "weibull", c(1,1,1,2,2,3))
pmokumg(mydata, "weibull", c(1,1,1,2,2,3))
qmokumg(runif(100), "weibull", c(1,1,1,2,2,3))
rmokumg(100, "weibull", c(1,1,1,2,2,3))
qqmokumg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsmokumg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.