Nothing
#' Performance Metrics
#'
#' Estimated performance metrics from ROC curves.
#'
#' @name metrics
#' @rdname metrics
#'
#' @param truth vector of true binary statuses.
#' @param rating vector of 0-1 binary ratings for the binary metrics and ranges
#' of numeric ratings for the others.
#' @param partial character string \code{"sensitivity"} or \code{"specificity"}
#' for calculation of partial AUC, or \code{FALSE} for full AUC. Partial
#' matching of the character strings is allowed. \code{"specificity"}
#' results in area under the ROC curve between the given \code{min} and
#' \code{max} specificity values, whereas \code{"sensitivity"} results in area to
#' the right of the curve between the given sensitivity values.
#' @param min,max minimum and maximum sensitivity or specificity values over
#' which to calculate partial AUC.
#' @param normalize logical indicating whether partial AUC is divided by the
#' interval width (\code{max - min}) over which it is calculated.
#' @param sens,spec numeric sensitivity/specificity at which to calculate
#' specificity/sensitivity.
#' @param slope slope of the iso-utility line at which to compute expected
#' utility of the ROC curve.
#'
#' @details
#' Performance metrics measure the degree to which higher case ratings are
#' associated with positive case statuses, where positive status is taken to be
#' the highest level of \code{truth}. Available metrics include area under the
#' ROC curve (auc), expected utility of the ROC curve (eu) at a given
#' iso-utility line (Abbey, 2013), sensitivity (sens) at a given specificity,
#' and specificity (spec) at a given sensitivity.
#'
#' @return
#' Returns a numeric value.
#'
#' @seealso \code{\link{mrmc}}, \code{\link{srmc}}, \code{\link{stmc}}
#'
#' @references
#' Abbey CK, Samuelson FW and Gallas BD (2013). Statistical power considerations
#' for a utility endpoint in observer performance studies. Academic Radiology,
#' 20: 798-806.
#'
NULL
#' @rdname metrics
#'
binary_sens <- function(truth, rating) {
binary_metric(truth, rating, function(truth, rating) {
value <- levels(truth)[2]
events <- is_reference(truth, value)
pos <- is_reference(rating, value)
mean(pos[events])
})
}
#' @rdname metrics
#'
binary_spec <- function(truth, rating) {
binary_metric(truth, rating, function(truth, rating) {
value <- levels(truth)[2]
nonevents <- !is_reference(truth, value)
neg <- !is_reference(rating, value)
mean(neg[nonevents])
})
}
binary_metric <- function(truth, rating, f) {
truth <- as.factor(truth)
if (!is.factor(rating)) {
rating <- factor(as.numeric(rating), levels = 0:1, labels = levels(truth))
}
f(truth, rating)
}
#' @rdname metrics
#'
binormal_auc <- function(
truth, rating, partial = FALSE, min = 0, max = 1, normalize = FALSE
) {
curve <- roc_curves(truth, rating, method = "binormal")
auc(curve, partial = partial, min = min, max = max, normalize = normalize)
}
#' @rdname metrics
#'
binormal_eu <- function(truth, rating, slope = 1) {
curve <- roc_curves(truth, rating, method = "binormal")
roc_eu(curve, slope = slope)
}
#' @rdname metrics
#'
binormal_sens <- function(truth, rating, spec) {
curve <- roc_curves(truth, rating, method = "binormal")
sensitivity(curve, specificity = spec)
}
#' @rdname metrics
#'
binormal_spec <- function(truth, rating, sens) {
curve <- roc_curves(truth, rating, method = "binormal")
specificity(curve, sensitivity = sens)
}
#' @rdname metrics
#'
binormalLR_auc <- function(
truth, rating, partial = FALSE, min = 0, max = 1, normalize = FALSE
) {
curve <- roc_curves(truth, rating, method = "binormalLR")
auc(curve, partial = partial, min = min, max = max, normalize = normalize)
}
#' @rdname metrics
#'
binormalLR_eu <- function(truth, rating, slope = 1) {
curve <- roc_curves(truth, rating, method = "binormalLR")
roc_eu(curve, slope = slope)
}
#' @rdname metrics
#'
binormalLR_sens <- function(truth, rating, spec) {
curve <- roc_curves(truth, rating, method = "binormalLR")
sensitivity(curve, specificity = spec)
}
#' @rdname metrics
#'
binormalLR_spec <- function(truth, rating, sens) {
curve <- roc_curves(truth, rating, method = "binormalLR")
specificity(curve, sensitivity = sens)
}
#' @rdname metrics
#'
empirical_auc <- function(
truth, rating, partial = FALSE, min = 0, max = 1, normalize = FALSE
) {
curve <- roc_curves(truth, rating, method = "empirical")
auc(curve, partial = partial, min = min, max = max, normalize = normalize)
}
#' @rdname metrics
#'
empirical_eu <- function(truth, rating, slope = 1) {
curve <- roc_curves(truth, rating, method = "empirical")
roc_eu(curve, slope = slope)
}
#' @rdname metrics
#'
empirical_sens <- function(truth, rating, spec) {
curve <- roc_curves(truth, rating, method = "empirical")
sensitivity(curve, specificity = spec)
}
#' @rdname metrics
#'
empirical_spec <- function(truth, rating, sens) {
curve <- roc_curves(truth, rating, method = "empirical")
specificity(curve, sensitivity = sens)
}
#' @rdname metrics
#'
trapezoidal_auc <- function(
truth, rating, partial = FALSE, min = 0, max = 1, normalize = FALSE
) {
do.call(empirical_auc, as.list(environment()))
}
#' @rdname metrics
#'
trapezoidal_sens <- function(truth, rating, spec) {
empirical_sens(truth, rating, spec)
}
#' @rdname metrics
#'
trapezoidal_spec <- function(truth, rating, sens) {
empirical_spec(truth, rating, sens)
}
psi <- function(x_pos, x_neg) {
(sign(x_pos - x_neg) + 1) / 2
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.