mvbfit: multivariate Bernoulli logistic model fitting

Description Usage Arguments Details Value See Also Examples

Description

fit multivariate Bernoulli logistic model using Newton-Raphson algorithm.

Usage

1
2
mvbfit(x, y, maxOrder = 2,
       output = 0, printIter = 100)

Arguments

x

input design matrix.

y

output binary matrix with number of columns equal to the number of outcomes per observation.

maxOrder

maximum order of interactions to be considered in outcomes.

output

with values 0 or 1, indicating whether the fitting process is muted or not.

printIter

Number of iterations to be printed if output is true.

Details

The mvbfit utilize the class structure of the underlying C++ code and fitted the model with Newton-Raphson algorithm.

Value

An object of class mvbfit, for which some methods are available.

See Also

mvblps, unifit, stepfit, mvb.simu

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
# fit a simple MVB log-linear model
n <- 1000
p <- 5
kk <- 2
tt <- NULL
alter <- 1
for (i in 1:kk) {
  vec <- rep(0, p)
  vec[i] <- alter
  alter <- alter * (-1)
  tt <- cbind(tt, vec)
}
tt <- 1.5 * tt
tt <- cbind(tt, c(rep(0, p - 1), 1))

x <- matrix(rnorm(n * p, 0, 4), n, p)
res <- mvb.simu(tt, x, K = kk, rep(.5, 2))
fitMVB <- mvbfit(x, res$response, output = 1)

MVB documentation built on May 2, 2019, 3:06 a.m.