Description Usage Arguments Value Examples
View source: R/corr.list.compute.R
This function uses the corr.compute() function to compute gene-specific Pearson correlation coefficients in each group of samples defined in a sample annotation matrix.
| 1 2 | corr.list.compute(exp.mat, cn.mat, gene.annot, sample.annot = NULL,
  method = "pearson", digits = 5, alternative = "greater")
 | 
| exp.mat | A matrix of gene-level expression data (rows = genes, columns = samples). Missing values are not permitted. | 
| cn.mat | A matrix of gene-level DNA copy number data (rows = genes, columns = samples). Both genes and samples should appear in the same order as exp.mat. Missing values are not permitted. | 
| gene.annot | A three-column matrix containing gene position information. Column 1 = chromosome number written in the form 'chr1' (note that chrX and chrY should be written chr23 and chr24), Column 2 = position (in base pairs), Column 3 = cytoband. Genes should appear in the same order as exp.mat and cn.mat. | 
| sample.annot | An optional two-column matrix of sample annotation data. Column 1 = sample IDs, Column 2 = sample annotation (e.g. tumor vs. normal). If NULL, sample annot will be created using the common sample IDs and a single group ('1'). Default = NULL. | 
| method | A character string (either "pearson" or "spearman") specifying the method used to calculate the correlation coefficient (default = "pearson"). | 
| digits | Used with signif() to specify the number of significant digits (default = 5). | 
| alternative | A character string ("greater" or "less") that specifies the direction of the alternative hypothesis, either rho > 0 or rho < 0 (default = "greater"). | 
Returns a list whose length is the number of unique groups defined by sample.annot. Each entry in the list is the output of corr.compute.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | exp.mat = tcga.exp.convert(exp.mat)
 cn.mat = tcga.cn.convert(cn.mat)
 prepped.data = data.prep(exp.mat, cn.mat, gene.annot, sample.annot, log.exp = FALSE)
 pd.exp = prepped.data[["exp"]]
 pd.cn = prepped.data[["cn"]]
 pd.ga = prepped.data[["gene.annot"]]
 pd.sa = prepped.data[["sample.annot"]]
 corr.list.compute(pd.exp, pd.cn, pd.ga, pd.sa)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.