Nothing
#' Proportional Hazards Regression Model
#'
#' Fits a Cox proportional hazards regression model. Time dependent variables,
#' time dependent strata, multiple events per subject, and other extensions are
#' incorporated using the counting process formulation of Andersen and Gill.
#'
#' @rdname CoxModel
#'
#' @param ties character string specifying the method for tie handling.
#' @param ... arguments passed to \code{\link[survival]{coxph.control}}.
#'
#' @details
#' \describe{
#' \item{Response types:}{\code{Surv}}
#' }
#'
#' Default argument values and further model details can be found in the source
#' See Also links below.
#'
#' In calls to \code{\link{varimp}} for \code{CoxModel} and
#' \code{CoxStepAICModel}, numeric argument \code{base} may be specified for the
#' (negative) logarithmic transformation of p-values [defaul: \code{exp(1)}].
#' Transformed p-values are automatically scaled in the calculation of variable
#' importance to range from 0 to 100. To obtain unscaled importance values, set
#' \code{scale = FALSE}.
#'
#' @return \code{MLModel} class object.
#'
#' @seealso \code{\link[survival]{coxph}},
#' \code{\link[survival]{coxph.control}}, \code{\link[MASS]{stepAIC}},
#' \code{\link{fit}}, \code{\link{resample}}
#'
#' @examples
#' library(survival)
#'
#' fit(Surv(time, status) ~ ., data = veteran, model = CoxModel)
#'
CoxModel <- function(ties = c("efron", "breslow", "exact"), ...) {
ties <- match.arg(ties)
MLModel(
name = "CoxModel",
label = "Cox Regression",
packages = "survival",
response_types = "Surv",
weights = TRUE,
predictor_encoding = "model.matrix",
na.rm = TRUE,
params = new_params(environment(), ...),
fit = function(formula, data, weights, ...) {
survival::coxph(
formula, data = as.data.frame(formula, data = data), weights = weights,
na.action = na.pass, ...
)
},
predict = function(object, newdata, .MachineShop, ...) {
y <- object$y
weights <- case_weights(.MachineShop$input)
newdata <- as.data.frame(newdata)
lp <- predict(object, type = "lp")
new_lp <- predict(object, newdata = newdata, type = "lp")
predict(y, lp, new_lp, weights = weights, ...)
},
varimp = function(object, base = exp(1), ...) {
varimp_pval(object, base = base)
}
)
}
MLModelFunction(CoxModel) <- NULL
#' @rdname CoxModel
#'
#' @param direction mode of stepwise search, can be one of \code{"both"}
#' (default), \code{"backward"}, or \code{"forward"}.
#' @param scope defines the range of models examined in the stepwise search.
#' This should be a list containing components \code{upper} and \code{lower},
#' both formulae.
#' @param k multiple of the number of degrees of freedom used for the penalty.
#' Only \code{k = 2} gives the genuine AIC; \code{k = .(log(nobs))} is
#' sometimes referred to as BIC or SBC.
#' @param trace if positive, information is printed during the running of
#' \code{stepAIC}. Larger values may give more information on the fitting
#' process.
#' @param steps maximum number of steps to be considered.
#'
CoxStepAICModel <- function(
ties = c("efron", "breslow", "exact"), ...,
direction = c("both", "backward", "forward"), scope = list(), k = 2,
trace = FALSE, steps = 1000
) {
direction <- match.arg(direction)
params <- new_params(environment())
stepmodel <- CoxModel(ties = ties, ...)
params <- params[setdiff(names(params), names(stepmodel@params))]
MLModel(
name = "CoxStepAICModel",
label = "Cox Regression (Stepwise)",
packages = c(stepmodel@packages, "MASS"),
response_types = stepmodel@response_types,
weights = stepmodel@weights,
predictor_encoding = stepmodel@predictor_encoding,
na.rm = stepmodel@na.rm,
params = c(stepmodel@params, params),
fit = function(
formula, data, weights, direction, scope = list(), k, trace, steps, ...
) {
data <- as.data.frame(formula, data = data)
stepargs <- stepAIC_args(formula, direction, scope)
MASS::stepAIC(
survival::coxph(
stepargs$formula, data = data, weights = weights, na.action = na.pass,
...
),
direction = direction, scope = stepargs$scope, k = k, trace = trace,
steps = steps
)
},
predict = stepmodel@predict,
varimp = stepmodel@varimp
)
}
MLModelFunction(CoxStepAICModel) <- NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.