Nothing
#' @name kmeans
#' @title k-means function
#' @description k-means algorithm in clustering. This function export the clustered results based on one replication of the k-means method
#' @param x matrix of data (dim 1: samples (must be equal to dim 1 of X), dim 2: attributes (must be equal to dim 2 of X))
#' @param centers initial seleted centroids (randomly or another method)
#' @param nItter Number of itteration function
#' @import stats
#' @import MASS
#' @import graphics
#' @return clustered results based on k-means methods.
#' @examples
#' {
#' X=rbind(matrix(rnorm(1000*2 ,4,.1),1000,2),matrix(rnorm(1000*2, 3, 0.2),1000,2))
#' M <- X[sample(nrow(X), 2),]
#' kmeans(X,M, 4)
#' }
#' @export
kmeans <- function(x, centers, nItter=4) {
clusterHistory <- vector(nItter, mode="list")
centerHistory <- vector(nItter, mode="list")
for(i in 1:nItter) {
distsToCenters <- Euclid(x, centers)
clusters <- apply(distsToCenters, 1, which.min)
centers <- apply(x, 2, tapply, clusters, mean)
dis2 <- apply(x, 2, tapply, clusters, dist)
dis2=as.matrix(dis2)
clusterHistory[[i]] <- clusters
centerHistory[[i]] <- centers
}
list(clusters=clusterHistory, centers=centerHistory )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.