Nothing
library('MaxWiK')
library('ggplot2')
# Load the data:
hyper = MaxWiK::Data.2D$ABC$hyperparameters
par.sim = MaxWiK::Data.2D$X
stat.sim = MaxWiK::Data.2D$Y
obs = MaxWiK::Data.2D$observation
Matrix.Voronoi = MaxWiK::Data.2D$ABC$Matrix.Voronoi
# Approximate Bayesian Computation ---------------------------------------------------------------------
res.MaxWik = get.MaxWiK(
psi = hyper$psi,
t = hyper$t,
param = par.sim,
stat.sim = stat.sim,
stat.obs = as.data.frame( t( obs$A ) ),
talkative = TRUE,
check_pos_def = TRUE,
Matrix_Voronoi = Matrix.Voronoi
)
# Get the Posteriori where similarity more than 0
w.sim = which(res.MaxWik$similarity > 0 )
posteriori.MaxWiK = par.sim[ w.sim, ]
posteriori.weights = res.MaxWik$similarity[ w.sim ] / sum( res.MaxWik$similarity[ w.sim ] )
MaxWiK.ggplot.density( title = ' Posteriori distribution of X1 parameter (Red line is a true value) ',
datafr1 = posteriori.MaxWiK,
datafr2 = NULL,
var.df = 'par.sim.X1',
obs.true = obs$x0[ 1 ],
best.sim = NULL
)
MaxWiK.ggplot.density( title = ' Posteriori distribution of X2 parameter (Red line is a true value) ',
datafr1 = posteriori.MaxWiK,
datafr2 = NULL,
var.df = 'par.sim.X2',
obs.true = obs$x0[ 2 ],
best.sim = NULL
)
########################## META-SAMPLING #######################################
meta.sampling = meta_sampling( psi = hyper$psi, t = hyper$t, param = par.sim,
stat.sim = stat.sim, stat.obs = as.data.frame( t( obs$A ) ),
talkative = FALSE, check_pos_def = FALSE ,
n_bullets = 42, n_best = 12, halfwidth = 0.5,
epsilon = 0.001, rate = 0.2,
max_iteration = 10, save_web = TRUE,
use.iKernelABC = res.MaxWik )
network = unique.data.frame( do.call(rbind.data.frame, meta.sampling$spiderweb ) )
MaxWiK.ggplot.density( title = ' Posteriori distribution of X1 parameter \n (Red line is a true value, dotted is the best simulation) \n red area is metasampling',
datafr1 = posteriori.MaxWiK,
datafr2 = network,
var.df = 'par.sim.X1',
obs.true = obs$x0[ 1 ],
best.sim = as.numeric( meta.sampling$par.best[ 1 ] )
)
MaxWiK.ggplot.density( title = ' Posteriori distribution of X2 parameter \n (Red line is a true value, dotted is the best simulation) \n red area is metasampling',
datafr1 = posteriori.MaxWiK,
datafr2 = network,
var.df = 'par.sim.X2',
obs.true = obs$x0[ 2 ],
best.sim = as.numeric( meta.sampling$par.best[ 2 ] )
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.