Description Usage Arguments Details Value Author(s) References See Also Examples
This function fits a probabilistic principal components analysis model to metabolomic spectral data via the EM algorithm.
1 2 | ppca.metabol(Y, minq=1, maxq=2, scale = "none", epsilon = 0.1,
plot.BIC = FALSE, printout=TRUE)
|
Y |
An N x p data matrix where each row is a spectrum. |
minq |
The minimum number of principal components to be fit. By default minq is 1. |
maxq |
The maximum number of principal components to be fit. By default maxq is 2. |
scale |
Type of scaling of the data which is required. The default is "none". Options include "pareto' and "unit" scaling. See |
epsilon |
Value on which the convergence assessment criterion is based. Set by default to 0.1. |
plot.BIC |
Logical indicating whether or not a plot of the BIC values for the different models fitted should be provided. By default, the plot is not produced. |
printout |
Logical indicating whether or not a statement is printed on screen detailing the progress of the algorithm. |
This function fits a probabilistic principal components analysis model to metabolomic spectral data via the EM algorithm. A range of models with different numbers of principal components can be fitted.
A list containing:
q |
The number of principal components in the optimal PPCA model, selected by the BIC. |
sig |
The posterior mode estimate of the variance of the error terms. |
scores |
An N x q matrix of estimates of the latent locations of each observation in the principal subspace. |
loadings |
The maximum likelihood estimate of the p x q loadings matrix. |
BIC |
A vector containing the BIC values for the fitted models. |
AIC |
A vector containing the AIC values for the fitted models. |
Nyamundanda Gift, Isobel Claire Gormley and Lorraine Brennan.
Nyamundanda G., Gormley, I.C. and Brennan, L. (2010) Probabilistic principal components analysis for metabolomic data. Technical report, University College Dublin.
ppca.metabol.jack
, loadings.plot
, ppca.scores.plot
1 2 3 4 5 6 7 | data(UrineSpectra)
## Not run:
mdlfit<-ppca.metabol(UrineSpectra[[1]], minq=2, maxq=2, scale="none")
loadings.plot(mdlfit)
ppca.scores.plot(mdlfit, group=UrineSpectra[[2]][,1])
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.