Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(MethEvolSIM)
## -----------------------------------------------------------------------------
# Example: a single sample with 3 genomic structures
# (1) island with 10 partially-methylated sites
# (2) non-island with 5 methylated sites
# (3) island with 15 unmethylated sites
data <- list(rep(0.5, 10), # Partially methylated
rep(1,5), # Methylated
rep(0,15)) # Unmethylated
data
## -----------------------------------------------------------------------------
# Example: data from 3 tips of a tree,
# each with 3 genomic structures
data <- list(
# Tip 1
list(c(rep(0.5,5), rep(0,5)), # 5 partially methylated, 5 unmethylated
c(rep(1,4), 0.5), # 4 methylated, 1 unmethylated
c(rep(0,7), rep(0.5,8))), # 7 unmethylated, 8 partially methylated
# Tip 2
list(c(rep(0.5,9), 1), # 9 partially methylated, 1 methylated
c(rep(0.5,4), 1), # 4 partially methylated, 1 methylated
c(rep(0,8), rep(0.5,7))), # 8 unmethylated, 7 partially-methylated
# Tip 3
list(c(1, rep(0,8), 1), # first and last methylated, rest unmethylated
c(rep(0.5,3), rep(1,2)), # 3 methylated, 1 unmethylated
c(rep(0.5,15)))) # all partially methylated
## -----------------------------------------------------------------------------
non_categorized_data <- list(
# Tip 1
list(c(0.1, 0.7, 0.9), # First structure
c(0.3, 0.5, 0.9)), # Second structure
# Tip 2
list(c(0.2, 0.8, 0.6), # First structure
c(0.9, 0.4, 0.7)) # Second structure
)
# Transform the data with custom thresholds
categorized_data <- categorize_siteMethSt(data, u_threshold = 0.15, m_threshold = 0.85)
categorized_data
## -----------------------------------------------------------------------------
# Example tree in Newick format for the above data
newick_tree <- "((tip1:1, tip2:1):1, tip3:2);"
# Example tree as a phylo object from the ape package
library(ape)
phylo_tree <- read.tree(text = newick_tree)
phylo_tree$tip.label
## -----------------------------------------------------------------------------
# 1 tip / sample / replicate
sample_n <- 1
index_islands <- c(1, 3)
index_nonislands <- c(2, 4)
data <- list(c(.5, .5, 0, 0, 0, .5), c(.5, 0, 0, .5), c(.5, .5, 0), c(0, 1, .5)) # tip 1
get_islandMeanFreqP(index_islands, data, categorized_data = T, sample_n)
get_nonislandMeanFreqP(index_nonislands, data, categorized_data = T, sample_n)
get_islandMeanFreqM(index_islands, data, categorized_data = T, sample_n)
get_nonislandMeanFreqM(index_nonislands, data, categorized_data = T, sample_n)
## -----------------------------------------------------------------------------
# 2 tip / sample / replicate
sample_n <- 2
index_islands <- c(1, 3)
index_nonislands <- c(2, 4)
data <- list(
list(c(.5, .5, 0, 0, 0, .5), c(.5, 0, 0, .5), c(.5, .5, 0), c(0, 0, .5)), # tip 1
list(c(0, .5, .5, 1, 1, .5), c(1, .5, 1, .5), c(0, .5, .5), c(1, .5, 1)) # tip 2
)
get_islandMeanFreqP(index_islands, data, categorized_data = T, sample_n)
get_nonislandMeanFreqP(index_nonislands, data, categorized_data = T, sample_n)
get_islandMeanFreqM(index_islands, data, categorized_data = T, sample_n)
get_nonislandMeanFreqM(index_nonislands, data, categorized_data = T, sample_n)
## -----------------------------------------------------------------------------
# 1 tip / sample / replicate
sample_n <- 1
index_islands <- c(1, 3)
index_nonislands <- c(2, 4)
data <- list(c(.5, .5, 0, 1, 1, .5), c(.5, 0, 1, .5), c(.5, .5, 0), c(0, 0, .5))
get_islandSDFreqP(index_islands, data, categorized_data = T, sample_n)
get_nonislandSDFreqP(index_nonislands, data, categorized_data = T, sample_n)
get_islandSDFreqM(index_islands, data, categorized_data = T, sample_n)
get_nonislandSDFreqM(index_nonislands, data, categorized_data = T, sample_n)
## -----------------------------------------------------------------------------
# 2 tip / sample / replicate
sample_n <- 2
index_islands <- c(1, 3)
index_nonislands <- c(2, 4)
data <- list(
list(c(.5, .5, 0, 0, 0, 1), c(.5, 0, 0, .5), c(1, .5, 0), c(0, 0, .5)), # tip 1
list(c(0, .5, .5, 1, 1, .5), c(1, .5, 1, .5), c(0, .5, .5), c(1, .5, 1)) # tip 2
)
get_islandSDFreqP(index_islands, data, categorized_data = T, sample_n)
get_nonislandSDFreqP(index_nonislands, data, categorized_data = T, sample_n)
get_islandSDFreqM(index_islands, data, categorized_data = T, sample_n)
get_nonislandSDFreqM(index_nonislands, data, categorized_data = T, sample_n)
## -----------------------------------------------------------------------------
# 1 tip / sample / replicate
sample_n <- 1
index_islands <- c(1, 3)
index_nonislands <- c(2, 4)
data <- list(c(.5, 0, 0, 0, .5, .5, .5, .5, .5, 1, .5, 0, 0, 0, .5, .5, .5, .5,
.5, 1, .5, 0, 0, 0, .5, .5, .5, .5, .5, 1), # 30 sites
c(.5, 1, 1, 1, .5, .5, 1, 1, 1, .5, .5, 1, 1, 1, .5, .5, 1, 1, 1,
.5, .5, 1, 1, 1, .5), # 25 sites
c(.5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0,
.5, 1, .5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5,
0, 0, .5, 1), # 40 sites
c(1, 1, 1, .5, .5, .5, 0, 0, 0, .5, 1, 1, 1, .5, .5, .5, 0, 0, 0,
.5, 1, 1, 1, .5, .5, .5, 0, 0, 0, .5,
.5, 0, 0, 0, .5)) # 35 sites
compute_meanCor_i(index_islands, minN_CpG = 10,
shore_length = 5, data, sample_n = 1, categorized_data = T)
compute_meanCor_ni(index_nonislands, minN_CpG = 10,
shore_length = 5, data, sample_n = 1, categorized_data = T)
## -----------------------------------------------------------------------------
# 2 tip / sample / replicate
sample_n <- 2
index_islands <- c(1, 3)
index_nonislands <- c(2, 4)
data <- list(
# tip 1
list(c(.5, 0, 0, 0, .5, .5, .5, .5, .5, 1, .5, 0, 0, 0, .5, .5, .5, .5, .5,
1, .5, 0, 0, 0, .5, .5, .5, .5, .5, 1), # 30 sites
c(.5, 1, 1, 1, .5, .5, 1, 1, 1, .5, .5, 1, 1, 1, .5, .5, 1, 1, 1, .5,
.5, 1, 1, 1, .5), # 25 sites
c(.5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0, .5, 1,
.5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0,
.5, 1), # 40 sites
c(1, 1, 1, .5, .5, .5, 0, 0, 0, .5, 1, 1, 1, .5, .5, .5, 0, 0, 0, .5,
1, 1, 1, .5, .5, .5, 0, 0, 0, .5, .5, 0, 0, 0, .5)), # 35 sites
# tip 2
list(c(.5, 0, 0, .5, .5, .5, 0, 0, .5, 1, .5, 0, 0, 0, 0, .5, .5, 1, 1, 1,
.5, 0, 0, 0, .5, .5, 1, 1, 1, 1), # 30 sites
c(.5, .5, 1, 1, .5, .5, 1, 1, 1, .5, .5, 0, 0, 0, .5, .5, 1, 1, 1, .5,
.5, 1, 1, 1, .5), # 25 sites
c(.5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0, .5, .5, .5, 0, 0, .5, 1,
1, 1, 1, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0, .5, 1, .5, 0, 0,
.5, 1), # 40 sites
c(1, 1, 1, .5, .5, .5, 0, 0, 0, .5, 1, 1, 1, 1, .5, .5, 0, 0, 0, .5, 1,
1, 1, .5, .5, .5, .5, .5, 0, .5, .5, .5, .5, 0, .5)) # 35 sites
)
compute_meanCor_i(index_islands, minN_CpG = 10,
shore_length = 5, data, sample_n = 2, categorized_data = T)
compute_meanCor_ni(index_nonislands, minN_CpG = 10,
shore_length = 5, data, sample_n = 2, categorized_data = T)
## -----------------------------------------------------------------------------
# Set example tree and methylation data
tree <- "((a:1.5,b:1.5):2,(c:2,d:2):1.5);"
data <- list(
list(rep(1,10), rep(0,5), rep(1,8)), # tip a
list(rep(1,10), rep(0.5,5), rep(0,8)), # tip b
list(rep(1,10), rep(0.5,5), rep(0,8)), # tip c
list(c(rep(0,5), rep(0.5, 5)), c(0, 0, 1, 1, 1), c(0.5, 1, rep(0, 6)))) # d
# Set the index for islands and non-island structures
index_islands <- c(2)
index_nonislands <- c(1, 3)
MeanSiteFChange_cherry(data = data,
categorized_data = T,
tree = tree,
index_islands = index_islands,
index_nonislands = index_nonislands)
## -----------------------------------------------------------------------------
# Example with data from a single island structure
# and three tips
tree <- "((bla:1,bah:1):2,booh:2);"
data <- list(
#Tip 1
list(c(rep(1,9), rep(0,1))), # m
#Tip 2
list(c(rep(0.5,10))), # p
#Tip 3
list(c(rep(0.5,9), rep(0.5,1)))) # p
index_islands <- c(1)
computeFitch_islandGlbSt(index_islands, data, tree,
u_threshold = 0.1, m_threshold = 0.9)
## -----------------------------------------------------------------------------
# Example: data from a genomic region consisting on 3 structures with 10 sites each
# one island, one non-island, one island
# and a tree with 8 tips
tree <- "(((a:1,b:1):1,(c:1,d:1):1):1,((e:1,f:1):1,(g:1,h:1):1):1);"
data <- list(
#Tip 1
list(c(rep(1,5), rep(0,5)), # p
c(rep(0,9), 1),
c(rep(1,8), rep(0.5,2))), # m
#Tip 2
list(c(rep(0.5,9), rep(0.5,1)), # p
c(rep(0.5,9), 1),
c(rep(0,8), rep(0.5,2))), # u
#Tip 3
list(c(rep(1,9), rep(0.5,1)), # m
c(rep(0.5,9), 1),
c(rep(0.5,8), rep(0.5,2))), # p
#Tip 4
list(c(rep(1,9), rep(0.5,1)), # m
c(rep(1,9), 0),
c(rep(0.5,8), rep(0.5,2))), # p
#Tip 5
list(c(rep(0,5), rep(0,5)), # u
c(rep(0,9), 1),
c(rep(0.5,8), rep(0.5,2))), # p
#Tip 6
list(c(rep(0,9), rep(0.5,1)), # u
c(rep(0.5,9), 1),
c(rep(1,8), rep(0.5,2))), # m
#Tip 7
list(c(rep(0,9), rep(0.5,1)), # u
c(rep(0.5,9), 1),
c(rep(0,8), rep(0.5,2))), # u
#Tip 8
list(c(rep(0,9), rep(0.5,1)), # u
c(rep(1,9), 0),
c(rep(0,9), rep(0.5,1)))) # u
index_islands <- c(1,3)
computeFitch_islandGlbSt(index_islands, data, tree,
u_threshold = 0.1, m_threshold = 0.9)
## -----------------------------------------------------------------------------
mean(computeFitch_islandGlbSt(index_islands, data, tree,
u_threshold = 0.1, m_threshold = 0.9))
## -----------------------------------------------------------------------------
# Set example tree and methylation data
tree <- "((a:1,b:1):2,c:2);"
data <- list(
#Tip a
list(c(rep(1,9), rep(0,1)), # Structure 1: island
c(rep(0,9), 1), # Structure 2: non-island
c(rep(0,9), rep(0.5,1))), # Structure 3: island
#Tip b
list(c(rep(0,9), rep(0.5,1)), # Structure 1: island
c(rep(0.5,9), 1), # Structure 2: non-island
c(rep(0,9), rep(0,1))), # Structure 3: island
#Tip c
list(c(rep(1,9), rep(0.5,1)), # Structure 1: island
c(rep(0.5,9), 1), # Structure 2: non-island
c(rep(0,9), rep(0.5,1)))) # Structure 3: island
index_islands <- c(1,3)
mean_CherryFreqsChange_i(data, categorized_data = T,
index_islands, tree,
pValue_threshold = 0.05)
## -----------------------------------------------------------------------------
# Set example tree and methylation data
tree <- "((a:1,b:1):2,(c:2,d:2):1);"
data <- list(
#Tip a
list(c(rep(1,9), rep(0,1)), # Structure 1: island
c(rep(0,9), 1), # Structure 2: non-island
c(rep(0,9), rep(0,1))), # Structure 3: island
#Tip b
list(c(rep(0,9), rep(0.5,1)), # Structure 1: island
c(rep(0.5,9), 1), # Structure 2: non-island
c(rep(0,9), rep(0,1))),# Structure 3: island
#Tip c
list(c(rep(0,9), rep(0.5,1)), # Structure 1: island
c(rep(0.5,9), 1), # Structure 2: non-island
c(rep(1,9), rep(0,1))),# Structure 3: island
#Tip d
list(c(rep(0,9), rep(0.5,1)), # Structure 1: island
c(rep(0.5,9), 1), # Structure 2: non-island
c(rep(1,8), rep(0.5,2)))) # Structure 3: island
index_islands <- c(1,3)
mean_TreeFreqsChange_i(tree, data, categorized_data = T,
index_islands,
pValue_threshold = 0.05)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.