Description Usage Arguments See Also Examples

A function to plot estimated overall and conditional survival/event curve(s) from the fitted regression models.

1 2 |

`fit` |
the output object from the fitted mixture regression model. |

`dist` |
a character string specified with either "overall" or "cond". The default dist="overall" plots the overall distribution of the event time, and dist="cond" plots the conditional distribution for the logarithm of the event time for susceptible/non-cured subjects. |

`curve` |
a character string specifies the type of desired curves to be plotted. The default curve="survival" plots the survival curves, and curve="event" plots event curves. |

`xlab` |
the title for x axis. |

`ylab` |
the title for y axis. |

`main` |
the main title of the plot. |

`col` |
a vector of colors. |

`lty` |
a vector of line types. |

`lwd` |
a numeric value specifies the line width. |

`axes` |
a logical value specifies whether axes should be drawn. If axes=FALSE, both x and y axes are not shown . |

`MixtureLogitAFT`

, `plotNPMLEsurv`

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ```
data(simLTICdataE)
##### fit the logistic-AFT location-scale model for LTIC data
fit=MixtureLogitAFT(formula=Surv(time1,time2,status)~1,
eventprobreg=~X1,locationreg=~X1+X2,scalereg=~X1+X2,
var.entry="entry",var.mixturetype="mtype",data=simLTICdataE)
##### print regression results of the fitted model
printMixture(fit)
##### plot estimated event curves of the fitted model
#win.graph(width=18,height=10)
#par(mfrow=c(1,2))
plot.fit=plotMixture(fit,curve="event",col=c("red","blue","deeppink"))
legend(55,0.95,legend=plot.fit$legend,col=plot.fit$col,lty=plot.fit$lty,
title=" Strata (Case / Total)",cex=0.85)
plotD.fit=plotMixture(fit,dist="cond",curve="event",col=c("red","blue","deeppink"))
legend(3,0.95,legend=plotD.fit$legend,col=plotD.fit$col,lty=plotD.fit$lty,
title=" Strata (Case / Total)",cex=0.85)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.