trainLGMM: Train a variety of latent growth mixture model

View source: R/trainlgmm.R

trainLGMMR Documentation

Train a variety of latent growth mixture model

Description

This function iterates through a grid of values to train LGMMs, optionally using a local or remote cluster.

Usage

trainLGMM(
  data,
  idvar,
  assessmentvar,
  newdata = FALSE,
  tuneGrid,
  cl,
  ncores = 1L
)

Arguments

data

A data frame or data table in long format (i.e., multiple rows per ID).

idvar

A character string of the variable name in the dataset that is the ID variable.

assessmentvar

A character string of the variable name in the dataset that indicates the particular assessment point for each timepoint.

newdata

A data frame of new values to use for generating predicted trajectories by class or FALSE if no predictions to be made (the default).

tuneGrid

A dataframe or list. It should have names for the needed arguments for long2LGMM().

cl

Optional. An existing cluster to be used to estimate models. Can be a local or remote cluster. In either case it needs MplusAUtomation and Mplus available.

ncores

If a cluster is not passed to cl, specify the number of cores to use to create a local cluster. Must be an integer. Defaults to 1L.

Examples

## Not run: 
## This example is not run by default because even with very limitted number of
## random starts and iterations, it takes quite a few minutes
setwd(tempdir())

## Simulate Some Data from 3 classes
library(MASS)
set.seed(1234)
allcoef <- rbind(
  cbind(1, mvrnorm(n = 200,
                   mu = c(0, 2, 0),
                   Sigma = diag(c(.2, .1, .01)),
                   empirical = TRUE)),
  cbind(2, mvrnorm(n = 200,
                   mu = c(-3.35, 2, 2),
                   Sigma = diag(c(.2, .1, .1)),
                   empirical = TRUE)),
  cbind(3, mvrnorm(n = 200,
                   mu = c(3.35, 2, -2),
                   Sigma = diag(c(.2, .1, .1)),
                   empirical = TRUE)))
allcoef <- as.data.frame(allcoef)
names(allcoef) <- c("Class", "I", "L", "Q")
allcoef$ID <- 1:nrow(allcoef)
d <- do.call(rbind, lapply(1:nrow(allcoef), function(i) {
  out <- data.frame(
    ID = allcoef$ID[i],
    Class = allcoef$Class[i],
    Assess = 1:11,
    x = sort(runif(n = 11, min = -2, max = 2)))
  out$y <- rnorm(11,
    mean = allcoef$I[i] + allcoef$L[i] * out$x + allcoef$Q[i] * out$x^2,
    sd = .1)
  return(out)
}))

## create splines
library(splines)
time_splines <- ns(d$x, df = 3, Boundary.knots = quantile(d$x, probs = c(.02, .98)))
d$t1 <- time_splines[, 1]
d$t2 <- time_splines[, 2]
d$t3 <- time_splines[, 3]
d$xq <- d$x^2

## create new data to be used for predictions
nd <- data.frame(ID = 1,
                 x = seq(from = -2, to = 2, by = .1))
nd.splines <- with(attributes(time_splines),
                   ns(nd$x, df = degree, knots = knots,
                      Boundary.knots = Boundary.knots))
nd$t1 <- nd.splines[, 1]
nd$t2 <- nd.splines[, 2]
nd$t3 <- nd.splines[, 3]
nd$xq <- nd$x^2

## create a tuning grid of models to try
## all possible combinations are created of different time trends
## different covariance structures of the random effects
## and different number of classes
tuneGrid <- expand.grid(
  dv = "y",
  timevars = list(c("t1", "t2", "t3"), "x", c("x", "xq")),
  starts = "2 1",
  cov = c("independent", "zero"),
  k = c(1L, 3L),
  processors = 1L, run = TRUE,
  misstrick = TRUE, stringsAsFactors = FALSE)
tuneGrid$title <- paste0(
  c("linear", "quad", "spline")[sapply(tuneGrid$timevars, length)],
  "_",
  sapply(tuneGrid$cov, function(x) if(nchar(x)==4) substr(x, 1, 4) else substr(x, 1, 3)),
  "_",
  tuneGrid$k)
tuneGrid$base <- paste0(
  c("linear", "quad", "spline")[sapply(tuneGrid$timevars, length)],
  "_",
  sapply(tuneGrid$cov, function(x) if(nchar(x)==4) substr(x, 1, 4) else substr(x, 1, 3)))

## example using long2LGMM to fit one model at a time
mres <- long2LGMM(
        data = d,
        idvar = "ID",
        assessmentvar = "Assess",
        dv = tuneGrid$dv[1],
        timevars = tuneGrid$timevars[[1]],
        misstrick = tuneGrid$misstrick[1],
        k = tuneGrid$k[1],
        title = paste0(tuneGrid$title[1], tuneGrid$k[1]),
        base = tuneGrid$base[1],
        run = tuneGrid$run[1],
        processors = tuneGrid$processors[1],
        starts = tuneGrid$starts[1],
        newdata = nd,
        cov = tuneGrid$cov[1])

## Example using trainLGMM to fit a whole set of models
## can be distributed across a local or remote cluster
## Defaults to creating a local cluster, but can also pass an
## existing cluster
AllRes <- trainLGMM(
  data = d,
  idvar = "ID",
  assessmentvar = "Assess",
  newdata = nd,
  tuneGrid = tuneGrid,
  ncores = 2L)


tuneGridRes <- as.data.frame(
  cbind(tuneGrid,
        do.call(rbind, lapply(AllRes, function(x) {
          if (is.null(x$Model$results$summaries)) {
            NA
          } else {
            out <- x$Model$results$summaries
            ## deal with missing summary information for k = 1
            if (is.null(out$Entropy)) {
              out$Entropy <- 1
            }
            if (is.null(out$NCategoricalLatentVars)) {
              out$NCategoricalLatentVars <- 0
            }
            out[, sort(names(out)), drop = FALSE]
          }
        }))))

tuneGridRes$Type <- gsub("([a-z]+)_.*$", "\\1", tuneGridRes$title)

tuneGridRes$MinClass <- sapply(AllRes, function(x) {
  n <- x$Model$results$class_counts$mostLikely$count
  if(is.null(n)) {
    length(unique(d$ID))
  } else {
    min(n, na.rm = TRUE)
  }
})

## when trying many models, some may not converge
## subset to omit any missing AICC and look only at those with some
## minimum number of participants per class,
## for demonstration only arbitrarily set at 30
subset(tuneGridRes, !is.na(AICC) & MinClass >= 30,
       select = c(title, aBIC, AICC, Entropy, MinClass, LL))

## reshape data into long form which can make a very nice plot using ggplot2
tuneGridResL <- reshape(
  subset(tuneGridRes, select = c(Type, cov, k, Parameters, aBIC, AICC, AIC, BIC, Entropy)),
  varying = c("Parameters", "aBIC", "AICC", "AIC", "BIC", "Entropy"),
  v.names = "value",
  times = c("Parameters", "aBIC", "AICC", "AIC", "BIC", "Entropy"),
  timevar = "variable",
  idvar = c("Type", "cov", "k"),
  direction = "long")
tuneGridResL$cov <- factor(tuneGridResL$cov, levels = c("zero", "independent"))

## uncomment to run
## library(ggplot2)
## ggplot(tuneGridResL, aes(k, value, colour = Type, shape = Type)) +
##   geom_point() +
##   facet_grid(variable~cov, scales = "free")


## nice plot of the average trajectories in each class
## these are possible as trainLGMM exports predicted values for the
## new data fed in
## uncomment to run
## ggplot(AllRes[[which(tuneGridRes$title=="quad_ind_3")]]$predictions, aes(x)) +
##   geom_line(aes(y = y_1), colour = "black", size = 2) +
##   geom_line(aes(y = y_2), colour = "red", size = 2) +
##   geom_line(aes(y = y_3), colour = "blue", size = 2)

## End(Not run)

MplusAutomation documentation built on May 29, 2024, 5:29 a.m.