Description Usage Arguments Value Author(s) References Examples
These functions can be used to combine one or several basic probability assignments (bpa). In the limited context that we support here, a bpa is nothing but a discrete distribution, that may have an additional mass for ignorance.
The suffix tells how the combination will be done : ds
denotes
that the Dempster-Shafer rules will be used, bs
denotes that
Bayes' rule will be used. Thus the function combine.ds
combines
two numeric vectors by Dempster-Shafer rules.
The first middle denotes what kind of object a function operates
on. Thus combine.bpa.ds
combines two bpa
objects by
Dempster-Shafer rules, while combine.bpamat.ds
does the same for
two bpamat objects.
Finally, the second middle may be used - if set to list
, it
combines lists of objects. Thus, the function combine.bpa.list.ds
combines lists of bpa
objects by Dempster-Shafer rules.
1 2 3 4 5 6 7 8 9 10 | combine.bs(x, y)
combine.ds(x, y)
combine.bpa.bs(b1, b2)
combine.bpa.ds(b1, b2)
combine.bpa.list.bs(blist)
combine.bpa.list.ds(blist)
combine.bpamat.bs(bmat1, bmat2)
combine.bpamat.ds(bmat1, bmat2)
combine.bpamat.list.bs(bmatlist)
combine.bpamat.list.ds(bmatlist)
|
x |
A numeric vector representing a bpa. |
y |
A numeric vector representing a bpa. |
b1 |
The first bpa object that needs to be combined. |
b2 |
The second bpa object that needs to be combined. |
blist |
A list of bpa's to be be combined. |
bmat1 |
The first bpa matrix that needs to be combined. |
bmat2 |
The second bpa matrix that needs to be combined. |
bmatlist |
A list of bpa matrices to be be combined. |
The combine.ds
functions returns a numeric vector representing
the new bpa.
The combine.bpamat.bs
, combine.bpamat.ds
,
combine.bpamat.list.bs
and combine.bpamat.list.bs
functions themselves returns a bpamat object.
The combine.bpa.bs
, combine.bpa.ds
,
combine.bpa.list.bs
and the combine.bpa.list.ds
functions themselves returns a bpa object.
Mohit Dayal
Gordon, J. and Shortliffe, E. H. (1984). The dempster-shafer theory of evidence. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project, 3:832-838. Shafer, G. (1986). The combination of evidence. International Journal of Intelligent Systems, 1(3):155-179.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ##Very Strong, Consistent Testimony
vstrong <- c(0.85, 0.07, 0.08)
##Strong, Consistent Testimony
strong <- c(0.7, 0.15, 0.15)
##Somewhat Ambiguous Testimony
amb <- c(0.55, 0.40, 0.05)
##More Diffuse Testimony
amb2 <- c(0.55, 0.20, 0.25)
fn_gen <- function(par)
{
x <- gtools::rdirichlet(2, par)
y <- x
y <- t(apply(y, MARGIN = 1, FUN = function(x) x * 0.9))
y <- cbind(y, 0.1)
return(y)
}
a1 <- fn_gen(vstrong)
combine.bs(a1[1,], a1[2,])
combine.ds(a1[1,], a1[2,])
a2 <- fn_gen(strong)
combine.bs(a2[1,], a2[2,])
combine.ds(a2[1,], a2[2,])
a3 <- fn_gen(amb)
combine.bs(a3[1,], a3[2,])
combine.ds(a3[1,], a3[2,])
a4 <- fn_gen(amb2)
combine.bs(a4[1,], a4[2,])
combine.ds(a4[1,], a4[2,])
##For bpa or bpamat examples, see the relevant help files
|
[1] 9.806945e-01 2.025944e-04 3.592420e-11 1.910287e-02
1 2 3 Inf
0.65668753 0.01941450 0.01737956 0.30651841
[1] 9.401782e-01 2.197409e-06 1.459460e-07 5.981945e-02
1 2 3 Inf
0.257010957 0.009741922 0.070416840 0.662830281
[1] 6.856710e-01 2.655690e-01 1.123313e-12 4.875991e-02
1 2 3 Inf
2.401687e-01 1.348855e-01 3.239186e-05 6.249135e-01
[1] 0.96308857 0.01079173 0.00651074 0.01960897
1 2 3 Inf
0.63276650 0.03219780 0.01500649 0.32002921
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.