combine: Combining Basic Probability Assignments

Description Usage Arguments Value Author(s) References Examples

Description

These functions can be used to combine one or several basic probability assignments (bpa). In the limited context that we support here, a bpa is nothing but a discrete distribution, that may have an additional mass for ignorance.

The suffix tells how the combination will be done : ds denotes that the Dempster-Shafer rules will be used, bs denotes that Bayes' rule will be used. Thus the function combine.ds combines two numeric vectors by Dempster-Shafer rules.

The first middle denotes what kind of object a function operates on. Thus combine.bpa.ds combines two bpa objects by Dempster-Shafer rules, while combine.bpamat.ds does the same for two bpamat objects.

Finally, the second middle may be used - if set to list, it combines lists of objects. Thus, the function combine.bpa.list.ds combines lists of bpa objects by Dempster-Shafer rules.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

Arguments

x

A numeric vector representing a bpa.

y

A numeric vector representing a bpa.

b1

The first bpa object that needs to be combined.

b2

The second bpa object that needs to be combined.

blist

A list of bpa's to be be combined.

bmat1

The first bpa matrix that needs to be combined.

bmat2

The second bpa matrix that needs to be combined.

bmatlist

A list of bpa matrices to be be combined.

Value

The combine.ds functions returns a numeric vector representing the new bpa.

The combine.bpamat.bs, combine.bpamat.ds, combine.bpamat.list.bs and combine.bpamat.list.bs functions themselves returns a bpamat object.

The combine.bpa.bs, combine.bpa.ds, combine.bpa.list.bs and the combine.bpa.list.ds functions themselves returns a bpa object.

Author(s)

Mohit Dayal

References

Gordon, J. and Shortliffe, E. H. (1984). The dempster-shafer theory of evidence. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project, 3:832-838. Shafer, G. (1986). The combination of evidence. International Journal of Intelligent Systems, 1(3):155-179.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
##Very Strong, Consistent Testimony
vstrong <- c(0.85, 0.07, 0.08)
##Strong, Consistent Testimony
strong <- c(0.7, 0.15, 0.15)
##Somewhat Ambiguous Testimony
amb <- c(0.55, 0.40, 0.05)
##More Diffuse Testimony
amb2 <- c(0.55, 0.20, 0.25)

fn_gen <- function(par)
{
    x <- gtools::rdirichlet(2, par)
    y <- x
    y <- t(apply(y, MARGIN = 1, FUN = function(x) x * 0.9))
    y <- cbind(y, 0.1)
    return(y)
}

a1 <- fn_gen(vstrong)
combine.bs(a1[1,], a1[2,])
combine.ds(a1[1,], a1[2,])

a2 <- fn_gen(strong)
combine.bs(a2[1,], a2[2,])
combine.ds(a2[1,], a2[2,])

a3 <- fn_gen(amb)
combine.bs(a3[1,], a3[2,])
combine.ds(a3[1,], a3[2,])

a4 <- fn_gen(amb2)
combine.bs(a4[1,], a4[2,])
combine.ds(a4[1,], a4[2,])

##For bpa or bpamat examples, see the relevant help files

Example output

[1] 9.806945e-01 2.025944e-04 3.592420e-11 1.910287e-02
         1          2          3        Inf 
0.65668753 0.01941450 0.01737956 0.30651841 
[1] 9.401782e-01 2.197409e-06 1.459460e-07 5.981945e-02
          1           2           3         Inf 
0.257010957 0.009741922 0.070416840 0.662830281 
[1] 6.856710e-01 2.655690e-01 1.123313e-12 4.875991e-02
           1            2            3          Inf 
2.401687e-01 1.348855e-01 3.239186e-05 6.249135e-01 
[1] 0.96308857 0.01079173 0.00651074 0.01960897
         1          2          3        Inf 
0.63276650 0.03219780 0.01500649 0.32002921 

MuViCP documentation built on May 1, 2019, 7:56 p.m.